Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ofmresex | GIF version |
Description: Existence of a restriction of the function operation map. (Contributed by NM, 20-Oct-2014.) |
Ref | Expression |
---|---|
ofmresex.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
ofmresex.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
Ref | Expression |
---|---|
ofmresex | ⊢ (𝜑 → ( ∘𝑓 𝑅 ↾ (𝐴 × 𝐵)) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ofmresex.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | ofmresex.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
3 | xpexg 4697 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 × 𝐵) ∈ V) | |
4 | 1, 2, 3 | syl2anc 409 | . 2 ⊢ (𝜑 → (𝐴 × 𝐵) ∈ V) |
5 | ofexg 6030 | . 2 ⊢ ((𝐴 × 𝐵) ∈ V → ( ∘𝑓 𝑅 ↾ (𝐴 × 𝐵)) ∈ V) | |
6 | 4, 5 | syl 14 | 1 ⊢ (𝜑 → ( ∘𝑓 𝑅 ↾ (𝐴 × 𝐵)) ∈ V) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∈ wcel 2128 Vcvv 2712 × cxp 4581 ↾ cres 4585 ∘𝑓 cof 6024 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-pow 4134 ax-pr 4168 ax-un 4392 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-id 4252 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-rn 4594 df-res 4595 df-ima 4596 df-iota 5132 df-fun 5169 df-fn 5170 df-f 5171 df-f1 5172 df-fo 5173 df-f1o 5174 df-fv 5175 df-oprab 5822 df-mpo 5823 df-of 6026 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |