ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecuzrdgdomlem Unicode version

Theorem frecuzrdgdomlem 10639
Description: The domain of the result of the recursive definition generator on upper integers. (Contributed by Jim Kingdon, 24-Apr-2022.)
Hypotheses
Ref Expression
frecuzrdgrclt.c  |-  ( ph  ->  C  e.  ZZ )
frecuzrdgrclt.a  |-  ( ph  ->  A  e.  S )
frecuzrdgrclt.t  |-  ( ph  ->  S  C_  T )
frecuzrdgrclt.f  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S
) )  ->  (
x F y )  e.  S )
frecuzrdgrclt.r  |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. )
frecuzrdgdomlem.g  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
Assertion
Ref Expression
frecuzrdgdomlem  |-  ( ph  ->  dom  ran  R  =  ( ZZ>= `  C )
)
Distinct variable groups:    x, C, y   
x, F, y    x, S, y    x, T, y    ph, x, y    x, R, y    x, G, y
Allowed substitution hints:    A( x, y)

Proof of Theorem frecuzrdgdomlem
Dummy variable  v is distinct from all other variables.
StepHypRef Expression
1 frecuzrdgrclt.c . . . . . 6  |-  ( ph  ->  C  e.  ZZ )
2 frecuzrdgrclt.a . . . . . 6  |-  ( ph  ->  A  e.  S )
3 frecuzrdgrclt.t . . . . . 6  |-  ( ph  ->  S  C_  T )
4 frecuzrdgrclt.f . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S
) )  ->  (
x F y )  e.  S )
5 frecuzrdgrclt.r . . . . . 6  |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. )
61, 2, 3, 4, 5frecuzrdgrclt 10637 . . . . 5  |-  ( ph  ->  R : om --> ( (
ZZ>= `  C )  X.  S ) )
7 frn 5482 . . . . 5  |-  ( R : om --> ( (
ZZ>= `  C )  X.  S )  ->  ran  R 
C_  ( ( ZZ>= `  C )  X.  S
) )
86, 7syl 14 . . . 4  |-  ( ph  ->  ran  R  C_  (
( ZZ>= `  C )  X.  S ) )
9 dmss 4922 . . . 4  |-  ( ran 
R  C_  ( ( ZZ>=
`  C )  X.  S )  ->  dom  ran 
R  C_  dom  ( (
ZZ>= `  C )  X.  S ) )
108, 9syl 14 . . 3  |-  ( ph  ->  dom  ran  R  C_  dom  ( ( ZZ>= `  C
)  X.  S ) )
11 dmxpss 5159 . . 3  |-  dom  (
( ZZ>= `  C )  X.  S )  C_  ( ZZ>=
`  C )
1210, 11sstrdi 3236 . 2  |-  ( ph  ->  dom  ran  R  C_  ( ZZ>=
`  C ) )
138adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  ran  R  C_  ( ( ZZ>= `  C
)  X.  S ) )
14 ffun 5476 . . . . . . . . . . . 12  |-  ( R : om --> ( (
ZZ>= `  C )  X.  S )  ->  Fun  R )
156, 14syl 14 . . . . . . . . . . 11  |-  ( ph  ->  Fun  R )
1615adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  Fun  R )
17 frecuzrdgdomlem.g . . . . . . . . . . . . 13  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
181, 17frec2uzf1od 10628 . . . . . . . . . . . 12  |-  ( ph  ->  G : om -1-1-onto-> ( ZZ>= `  C )
)
19 f1ocnvdm 5905 . . . . . . . . . . . 12  |-  ( ( G : om -1-1-onto-> ( ZZ>= `  C )  /\  v  e.  ( ZZ>=
`  C ) )  ->  ( `' G `  v )  e.  om )
2018, 19sylan 283 . . . . . . . . . . 11  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  ( `' G `  v )  e.  om )
21 fdm 5479 . . . . . . . . . . . . 13  |-  ( R : om --> ( (
ZZ>= `  C )  X.  S )  ->  dom  R  =  om )
226, 21syl 14 . . . . . . . . . . . 12  |-  ( ph  ->  dom  R  =  om )
2322adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  dom  R  =  om )
2420, 23eleqtrrd 2309 . . . . . . . . . 10  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  ( `' G `  v )  e.  dom  R )
25 fvelrn 5766 . . . . . . . . . 10  |-  ( ( Fun  R  /\  ( `' G `  v )  e.  dom  R )  ->  ( R `  ( `' G `  v ) )  e.  ran  R
)
2616, 24, 25syl2anc 411 . . . . . . . . 9  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  ( R `  ( `' G `  v ) )  e. 
ran  R )
2713, 26sseldd 3225 . . . . . . . 8  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  ( R `  ( `' G `  v ) )  e.  ( ( ZZ>= `  C
)  X.  S ) )
28 1st2nd2 6321 . . . . . . . 8  |-  ( ( R `  ( `' G `  v ) )  e.  ( (
ZZ>= `  C )  X.  S )  ->  ( R `  ( `' G `  v )
)  =  <. ( 1st `  ( R `  ( `' G `  v ) ) ) ,  ( 2nd `  ( R `
 ( `' G `  v ) ) )
>. )
2927, 28syl 14 . . . . . . 7  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  ( R `  ( `' G `  v ) )  = 
<. ( 1st `  ( R `  ( `' G `  v )
) ) ,  ( 2nd `  ( R `
 ( `' G `  v ) ) )
>. )
301adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  C  e.  ZZ )
312adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  A  e.  S )
323adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  S  C_  T
)
334adantlr 477 . . . . . . . . . 10  |-  ( ( ( ph  /\  v  e.  ( ZZ>= `  C )
)  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S
) )  ->  (
x F y )  e.  S )
3430, 31, 32, 33, 5, 20, 17frecuzrdgg 10638 . . . . . . . . 9  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  ( 1st `  ( R `  ( `' G `  v ) ) )  =  ( G `  ( `' G `  v ) ) )
35 f1ocnvfv2 5902 . . . . . . . . . 10  |-  ( ( G : om -1-1-onto-> ( ZZ>= `  C )  /\  v  e.  ( ZZ>=
`  C ) )  ->  ( G `  ( `' G `  v ) )  =  v )
3618, 35sylan 283 . . . . . . . . 9  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  ( G `  ( `' G `  v ) )  =  v )
3734, 36eqtrd 2262 . . . . . . . 8  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  ( 1st `  ( R `  ( `' G `  v ) ) )  =  v )
3837opeq1d 3863 . . . . . . 7  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  <. ( 1st `  ( R `  ( `' G `  v ) ) ) ,  ( 2nd `  ( R `
 ( `' G `  v ) ) )
>.  =  <. v ,  ( 2nd `  ( R `  ( `' G `  v )
) ) >. )
3929, 38eqtrd 2262 . . . . . 6  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  ( R `  ( `' G `  v ) )  = 
<. v ,  ( 2nd `  ( R `  ( `' G `  v ) ) ) >. )
4039, 26eqeltrrd 2307 . . . . 5  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  <. v ,  ( 2nd `  ( R `  ( `' G `  v )
) ) >.  e.  ran  R )
41 simpr 110 . . . . . 6  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  v  e.  ( ZZ>= `  C )
)
42 xp2nd 6312 . . . . . . 7  |-  ( ( R `  ( `' G `  v ) )  e.  ( (
ZZ>= `  C )  X.  S )  ->  ( 2nd `  ( R `  ( `' G `  v ) ) )  e.  S
)
4327, 42syl 14 . . . . . 6  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  ( 2nd `  ( R `  ( `' G `  v ) ) )  e.  S
)
44 opeldmg 4928 . . . . . 6  |-  ( ( v  e.  ( ZZ>= `  C )  /\  ( 2nd `  ( R `  ( `' G `  v ) ) )  e.  S
)  ->  ( <. v ,  ( 2nd `  ( R `  ( `' G `  v )
) ) >.  e.  ran  R  ->  v  e.  dom  ran 
R ) )
4541, 43, 44syl2anc 411 . . . . 5  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  ( <. v ,  ( 2nd `  ( R `  ( `' G `  v )
) ) >.  e.  ran  R  ->  v  e.  dom  ran 
R ) )
4640, 45mpd 13 . . . 4  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  v  e.  dom  ran  R )
4746ex 115 . . 3  |-  ( ph  ->  ( v  e.  (
ZZ>= `  C )  -> 
v  e.  dom  ran  R ) )
4847ssrdv 3230 . 2  |-  ( ph  ->  ( ZZ>= `  C )  C_ 
dom  ran  R )
4912, 48eqssd 3241 1  |-  ( ph  ->  dom  ran  R  =  ( ZZ>= `  C )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200    C_ wss 3197   <.cop 3669    |-> cmpt 4145   omcom 4682    X. cxp 4717   `'ccnv 4718   dom cdm 4719   ran crn 4720   Fun wfun 5312   -->wf 5314   -1-1-onto->wf1o 5317   ` cfv 5318  (class class class)co 6001    e. cmpo 6003   1stc1st 6284   2ndc2nd 6285  freccfrec 6536   1c1 8000    + caddc 8002   ZZcz 9446   ZZ>=cuz 9722
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4199  ax-sep 4202  ax-nul 4210  ax-pow 4258  ax-pr 4293  ax-un 4524  ax-setind 4629  ax-iinf 4680  ax-cnex 8090  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0lt1 8105  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110  ax-pre-ltirr 8111  ax-pre-ltwlin 8112  ax-pre-lttrn 8113  ax-pre-ltadd 8115
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-int 3924  df-iun 3967  df-br 4084  df-opab 4146  df-mpt 4147  df-tr 4183  df-id 4384  df-iord 4457  df-on 4459  df-ilim 4460  df-suc 4462  df-iom 4683  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-res 4731  df-ima 4732  df-iota 5278  df-fun 5320  df-fn 5321  df-f 5322  df-f1 5323  df-fo 5324  df-f1o 5325  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-1st 6286  df-2nd 6287  df-recs 6451  df-frec 6537  df-pnf 8183  df-mnf 8184  df-xr 8185  df-ltxr 8186  df-le 8187  df-sub 8319  df-neg 8320  df-inn 9111  df-n0 9370  df-z 9447  df-uz 9723
This theorem is referenced by:  frecuzrdgdom  10640
  Copyright terms: Public domain W3C validator