| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > frecuzrdgdomlem | Unicode version | ||
| Description: The domain of the result of the recursive definition generator on upper integers. (Contributed by Jim Kingdon, 24-Apr-2022.) |
| Ref | Expression |
|---|---|
| frecuzrdgrclt.c |
|
| frecuzrdgrclt.a |
|
| frecuzrdgrclt.t |
|
| frecuzrdgrclt.f |
|
| frecuzrdgrclt.r |
|
| frecuzrdgdomlem.g |
|
| Ref | Expression |
|---|---|
| frecuzrdgdomlem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frecuzrdgrclt.c |
. . . . . 6
| |
| 2 | frecuzrdgrclt.a |
. . . . . 6
| |
| 3 | frecuzrdgrclt.t |
. . . . . 6
| |
| 4 | frecuzrdgrclt.f |
. . . . . 6
| |
| 5 | frecuzrdgrclt.r |
. . . . . 6
| |
| 6 | 1, 2, 3, 4, 5 | frecuzrdgrclt 10524 |
. . . . 5
|
| 7 | frn 5419 |
. . . . 5
| |
| 8 | 6, 7 | syl 14 |
. . . 4
|
| 9 | dmss 4866 |
. . . 4
| |
| 10 | 8, 9 | syl 14 |
. . 3
|
| 11 | dmxpss 5101 |
. . 3
| |
| 12 | 10, 11 | sstrdi 3196 |
. 2
|
| 13 | 8 | adantr 276 |
. . . . . . . . 9
|
| 14 | ffun 5413 |
. . . . . . . . . . . 12
| |
| 15 | 6, 14 | syl 14 |
. . . . . . . . . . 11
|
| 16 | 15 | adantr 276 |
. . . . . . . . . 10
|
| 17 | frecuzrdgdomlem.g |
. . . . . . . . . . . . 13
| |
| 18 | 1, 17 | frec2uzf1od 10515 |
. . . . . . . . . . . 12
|
| 19 | f1ocnvdm 5831 |
. . . . . . . . . . . 12
| |
| 20 | 18, 19 | sylan 283 |
. . . . . . . . . . 11
|
| 21 | fdm 5416 |
. . . . . . . . . . . . 13
| |
| 22 | 6, 21 | syl 14 |
. . . . . . . . . . . 12
|
| 23 | 22 | adantr 276 |
. . . . . . . . . . 11
|
| 24 | 20, 23 | eleqtrrd 2276 |
. . . . . . . . . 10
|
| 25 | fvelrn 5696 |
. . . . . . . . . 10
| |
| 26 | 16, 24, 25 | syl2anc 411 |
. . . . . . . . 9
|
| 27 | 13, 26 | sseldd 3185 |
. . . . . . . 8
|
| 28 | 1st2nd2 6242 |
. . . . . . . 8
| |
| 29 | 27, 28 | syl 14 |
. . . . . . 7
|
| 30 | 1 | adantr 276 |
. . . . . . . . . 10
|
| 31 | 2 | adantr 276 |
. . . . . . . . . 10
|
| 32 | 3 | adantr 276 |
. . . . . . . . . 10
|
| 33 | 4 | adantlr 477 |
. . . . . . . . . 10
|
| 34 | 30, 31, 32, 33, 5, 20, 17 | frecuzrdgg 10525 |
. . . . . . . . 9
|
| 35 | f1ocnvfv2 5828 |
. . . . . . . . . 10
| |
| 36 | 18, 35 | sylan 283 |
. . . . . . . . 9
|
| 37 | 34, 36 | eqtrd 2229 |
. . . . . . . 8
|
| 38 | 37 | opeq1d 3815 |
. . . . . . 7
|
| 39 | 29, 38 | eqtrd 2229 |
. . . . . 6
|
| 40 | 39, 26 | eqeltrrd 2274 |
. . . . 5
|
| 41 | simpr 110 |
. . . . . 6
| |
| 42 | xp2nd 6233 |
. . . . . . 7
| |
| 43 | 27, 42 | syl 14 |
. . . . . 6
|
| 44 | opeldmg 4872 |
. . . . . 6
| |
| 45 | 41, 43, 44 | syl2anc 411 |
. . . . 5
|
| 46 | 40, 45 | mpd 13 |
. . . 4
|
| 47 | 46 | ex 115 |
. . 3
|
| 48 | 47 | ssrdv 3190 |
. 2
|
| 49 | 12, 48 | eqssd 3201 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-addass 7998 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-0id 8004 ax-rnegex 8005 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-frec 6458 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-inn 9008 df-n0 9267 df-z 9344 df-uz 9619 |
| This theorem is referenced by: frecuzrdgdom 10527 |
| Copyright terms: Public domain | W3C validator |