ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecuzrdgdomlem Unicode version

Theorem frecuzrdgdomlem 10599
Description: The domain of the result of the recursive definition generator on upper integers. (Contributed by Jim Kingdon, 24-Apr-2022.)
Hypotheses
Ref Expression
frecuzrdgrclt.c  |-  ( ph  ->  C  e.  ZZ )
frecuzrdgrclt.a  |-  ( ph  ->  A  e.  S )
frecuzrdgrclt.t  |-  ( ph  ->  S  C_  T )
frecuzrdgrclt.f  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S
) )  ->  (
x F y )  e.  S )
frecuzrdgrclt.r  |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. )
frecuzrdgdomlem.g  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
Assertion
Ref Expression
frecuzrdgdomlem  |-  ( ph  ->  dom  ran  R  =  ( ZZ>= `  C )
)
Distinct variable groups:    x, C, y   
x, F, y    x, S, y    x, T, y    ph, x, y    x, R, y    x, G, y
Allowed substitution hints:    A( x, y)

Proof of Theorem frecuzrdgdomlem
Dummy variable  v is distinct from all other variables.
StepHypRef Expression
1 frecuzrdgrclt.c . . . . . 6  |-  ( ph  ->  C  e.  ZZ )
2 frecuzrdgrclt.a . . . . . 6  |-  ( ph  ->  A  e.  S )
3 frecuzrdgrclt.t . . . . . 6  |-  ( ph  ->  S  C_  T )
4 frecuzrdgrclt.f . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S
) )  ->  (
x F y )  e.  S )
5 frecuzrdgrclt.r . . . . . 6  |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. )
61, 2, 3, 4, 5frecuzrdgrclt 10597 . . . . 5  |-  ( ph  ->  R : om --> ( (
ZZ>= `  C )  X.  S ) )
7 frn 5454 . . . . 5  |-  ( R : om --> ( (
ZZ>= `  C )  X.  S )  ->  ran  R 
C_  ( ( ZZ>= `  C )  X.  S
) )
86, 7syl 14 . . . 4  |-  ( ph  ->  ran  R  C_  (
( ZZ>= `  C )  X.  S ) )
9 dmss 4896 . . . 4  |-  ( ran 
R  C_  ( ( ZZ>=
`  C )  X.  S )  ->  dom  ran 
R  C_  dom  ( (
ZZ>= `  C )  X.  S ) )
108, 9syl 14 . . 3  |-  ( ph  ->  dom  ran  R  C_  dom  ( ( ZZ>= `  C
)  X.  S ) )
11 dmxpss 5132 . . 3  |-  dom  (
( ZZ>= `  C )  X.  S )  C_  ( ZZ>=
`  C )
1210, 11sstrdi 3213 . 2  |-  ( ph  ->  dom  ran  R  C_  ( ZZ>=
`  C ) )
138adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  ran  R  C_  ( ( ZZ>= `  C
)  X.  S ) )
14 ffun 5448 . . . . . . . . . . . 12  |-  ( R : om --> ( (
ZZ>= `  C )  X.  S )  ->  Fun  R )
156, 14syl 14 . . . . . . . . . . 11  |-  ( ph  ->  Fun  R )
1615adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  Fun  R )
17 frecuzrdgdomlem.g . . . . . . . . . . . . 13  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
181, 17frec2uzf1od 10588 . . . . . . . . . . . 12  |-  ( ph  ->  G : om -1-1-onto-> ( ZZ>= `  C )
)
19 f1ocnvdm 5873 . . . . . . . . . . . 12  |-  ( ( G : om -1-1-onto-> ( ZZ>= `  C )  /\  v  e.  ( ZZ>=
`  C ) )  ->  ( `' G `  v )  e.  om )
2018, 19sylan 283 . . . . . . . . . . 11  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  ( `' G `  v )  e.  om )
21 fdm 5451 . . . . . . . . . . . . 13  |-  ( R : om --> ( (
ZZ>= `  C )  X.  S )  ->  dom  R  =  om )
226, 21syl 14 . . . . . . . . . . . 12  |-  ( ph  ->  dom  R  =  om )
2322adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  dom  R  =  om )
2420, 23eleqtrrd 2287 . . . . . . . . . 10  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  ( `' G `  v )  e.  dom  R )
25 fvelrn 5734 . . . . . . . . . 10  |-  ( ( Fun  R  /\  ( `' G `  v )  e.  dom  R )  ->  ( R `  ( `' G `  v ) )  e.  ran  R
)
2616, 24, 25syl2anc 411 . . . . . . . . 9  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  ( R `  ( `' G `  v ) )  e. 
ran  R )
2713, 26sseldd 3202 . . . . . . . 8  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  ( R `  ( `' G `  v ) )  e.  ( ( ZZ>= `  C
)  X.  S ) )
28 1st2nd2 6284 . . . . . . . 8  |-  ( ( R `  ( `' G `  v ) )  e.  ( (
ZZ>= `  C )  X.  S )  ->  ( R `  ( `' G `  v )
)  =  <. ( 1st `  ( R `  ( `' G `  v ) ) ) ,  ( 2nd `  ( R `
 ( `' G `  v ) ) )
>. )
2927, 28syl 14 . . . . . . 7  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  ( R `  ( `' G `  v ) )  = 
<. ( 1st `  ( R `  ( `' G `  v )
) ) ,  ( 2nd `  ( R `
 ( `' G `  v ) ) )
>. )
301adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  C  e.  ZZ )
312adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  A  e.  S )
323adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  S  C_  T
)
334adantlr 477 . . . . . . . . . 10  |-  ( ( ( ph  /\  v  e.  ( ZZ>= `  C )
)  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S
) )  ->  (
x F y )  e.  S )
3430, 31, 32, 33, 5, 20, 17frecuzrdgg 10598 . . . . . . . . 9  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  ( 1st `  ( R `  ( `' G `  v ) ) )  =  ( G `  ( `' G `  v ) ) )
35 f1ocnvfv2 5870 . . . . . . . . . 10  |-  ( ( G : om -1-1-onto-> ( ZZ>= `  C )  /\  v  e.  ( ZZ>=
`  C ) )  ->  ( G `  ( `' G `  v ) )  =  v )
3618, 35sylan 283 . . . . . . . . 9  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  ( G `  ( `' G `  v ) )  =  v )
3734, 36eqtrd 2240 . . . . . . . 8  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  ( 1st `  ( R `  ( `' G `  v ) ) )  =  v )
3837opeq1d 3839 . . . . . . 7  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  <. ( 1st `  ( R `  ( `' G `  v ) ) ) ,  ( 2nd `  ( R `
 ( `' G `  v ) ) )
>.  =  <. v ,  ( 2nd `  ( R `  ( `' G `  v )
) ) >. )
3929, 38eqtrd 2240 . . . . . 6  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  ( R `  ( `' G `  v ) )  = 
<. v ,  ( 2nd `  ( R `  ( `' G `  v ) ) ) >. )
4039, 26eqeltrrd 2285 . . . . 5  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  <. v ,  ( 2nd `  ( R `  ( `' G `  v )
) ) >.  e.  ran  R )
41 simpr 110 . . . . . 6  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  v  e.  ( ZZ>= `  C )
)
42 xp2nd 6275 . . . . . . 7  |-  ( ( R `  ( `' G `  v ) )  e.  ( (
ZZ>= `  C )  X.  S )  ->  ( 2nd `  ( R `  ( `' G `  v ) ) )  e.  S
)
4327, 42syl 14 . . . . . 6  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  ( 2nd `  ( R `  ( `' G `  v ) ) )  e.  S
)
44 opeldmg 4902 . . . . . 6  |-  ( ( v  e.  ( ZZ>= `  C )  /\  ( 2nd `  ( R `  ( `' G `  v ) ) )  e.  S
)  ->  ( <. v ,  ( 2nd `  ( R `  ( `' G `  v )
) ) >.  e.  ran  R  ->  v  e.  dom  ran 
R ) )
4541, 43, 44syl2anc 411 . . . . 5  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  ( <. v ,  ( 2nd `  ( R `  ( `' G `  v )
) ) >.  e.  ran  R  ->  v  e.  dom  ran 
R ) )
4640, 45mpd 13 . . . 4  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  v  e.  dom  ran  R )
4746ex 115 . . 3  |-  ( ph  ->  ( v  e.  (
ZZ>= `  C )  -> 
v  e.  dom  ran  R ) )
4847ssrdv 3207 . 2  |-  ( ph  ->  ( ZZ>= `  C )  C_ 
dom  ran  R )
4912, 48eqssd 3218 1  |-  ( ph  ->  dom  ran  R  =  ( ZZ>= `  C )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178    C_ wss 3174   <.cop 3646    |-> cmpt 4121   omcom 4656    X. cxp 4691   `'ccnv 4692   dom cdm 4693   ran crn 4694   Fun wfun 5284   -->wf 5286   -1-1-onto->wf1o 5289   ` cfv 5290  (class class class)co 5967    e. cmpo 5969   1stc1st 6247   2ndc2nd 6248  freccfrec 6499   1c1 7961    + caddc 7963   ZZcz 9407   ZZ>=cuz 9683
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-frec 6500  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-inn 9072  df-n0 9331  df-z 9408  df-uz 9684
This theorem is referenced by:  frecuzrdgdom  10600
  Copyright terms: Public domain W3C validator