ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecuzrdgdomlem Unicode version

Theorem frecuzrdgdomlem 10526
Description: The domain of the result of the recursive definition generator on upper integers. (Contributed by Jim Kingdon, 24-Apr-2022.)
Hypotheses
Ref Expression
frecuzrdgrclt.c  |-  ( ph  ->  C  e.  ZZ )
frecuzrdgrclt.a  |-  ( ph  ->  A  e.  S )
frecuzrdgrclt.t  |-  ( ph  ->  S  C_  T )
frecuzrdgrclt.f  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S
) )  ->  (
x F y )  e.  S )
frecuzrdgrclt.r  |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. )
frecuzrdgdomlem.g  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
Assertion
Ref Expression
frecuzrdgdomlem  |-  ( ph  ->  dom  ran  R  =  ( ZZ>= `  C )
)
Distinct variable groups:    x, C, y   
x, F, y    x, S, y    x, T, y    ph, x, y    x, R, y    x, G, y
Allowed substitution hints:    A( x, y)

Proof of Theorem frecuzrdgdomlem
Dummy variable  v is distinct from all other variables.
StepHypRef Expression
1 frecuzrdgrclt.c . . . . . 6  |-  ( ph  ->  C  e.  ZZ )
2 frecuzrdgrclt.a . . . . . 6  |-  ( ph  ->  A  e.  S )
3 frecuzrdgrclt.t . . . . . 6  |-  ( ph  ->  S  C_  T )
4 frecuzrdgrclt.f . . . . . 6  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S
) )  ->  (
x F y )  e.  S )
5 frecuzrdgrclt.r . . . . . 6  |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. )
61, 2, 3, 4, 5frecuzrdgrclt 10524 . . . . 5  |-  ( ph  ->  R : om --> ( (
ZZ>= `  C )  X.  S ) )
7 frn 5419 . . . . 5  |-  ( R : om --> ( (
ZZ>= `  C )  X.  S )  ->  ran  R 
C_  ( ( ZZ>= `  C )  X.  S
) )
86, 7syl 14 . . . 4  |-  ( ph  ->  ran  R  C_  (
( ZZ>= `  C )  X.  S ) )
9 dmss 4866 . . . 4  |-  ( ran 
R  C_  ( ( ZZ>=
`  C )  X.  S )  ->  dom  ran 
R  C_  dom  ( (
ZZ>= `  C )  X.  S ) )
108, 9syl 14 . . 3  |-  ( ph  ->  dom  ran  R  C_  dom  ( ( ZZ>= `  C
)  X.  S ) )
11 dmxpss 5101 . . 3  |-  dom  (
( ZZ>= `  C )  X.  S )  C_  ( ZZ>=
`  C )
1210, 11sstrdi 3196 . 2  |-  ( ph  ->  dom  ran  R  C_  ( ZZ>=
`  C ) )
138adantr 276 . . . . . . . . 9  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  ran  R  C_  ( ( ZZ>= `  C
)  X.  S ) )
14 ffun 5413 . . . . . . . . . . . 12  |-  ( R : om --> ( (
ZZ>= `  C )  X.  S )  ->  Fun  R )
156, 14syl 14 . . . . . . . . . . 11  |-  ( ph  ->  Fun  R )
1615adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  Fun  R )
17 frecuzrdgdomlem.g . . . . . . . . . . . . 13  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
181, 17frec2uzf1od 10515 . . . . . . . . . . . 12  |-  ( ph  ->  G : om -1-1-onto-> ( ZZ>= `  C )
)
19 f1ocnvdm 5831 . . . . . . . . . . . 12  |-  ( ( G : om -1-1-onto-> ( ZZ>= `  C )  /\  v  e.  ( ZZ>=
`  C ) )  ->  ( `' G `  v )  e.  om )
2018, 19sylan 283 . . . . . . . . . . 11  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  ( `' G `  v )  e.  om )
21 fdm 5416 . . . . . . . . . . . . 13  |-  ( R : om --> ( (
ZZ>= `  C )  X.  S )  ->  dom  R  =  om )
226, 21syl 14 . . . . . . . . . . . 12  |-  ( ph  ->  dom  R  =  om )
2322adantr 276 . . . . . . . . . . 11  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  dom  R  =  om )
2420, 23eleqtrrd 2276 . . . . . . . . . 10  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  ( `' G `  v )  e.  dom  R )
25 fvelrn 5696 . . . . . . . . . 10  |-  ( ( Fun  R  /\  ( `' G `  v )  e.  dom  R )  ->  ( R `  ( `' G `  v ) )  e.  ran  R
)
2616, 24, 25syl2anc 411 . . . . . . . . 9  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  ( R `  ( `' G `  v ) )  e. 
ran  R )
2713, 26sseldd 3185 . . . . . . . 8  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  ( R `  ( `' G `  v ) )  e.  ( ( ZZ>= `  C
)  X.  S ) )
28 1st2nd2 6242 . . . . . . . 8  |-  ( ( R `  ( `' G `  v ) )  e.  ( (
ZZ>= `  C )  X.  S )  ->  ( R `  ( `' G `  v )
)  =  <. ( 1st `  ( R `  ( `' G `  v ) ) ) ,  ( 2nd `  ( R `
 ( `' G `  v ) ) )
>. )
2927, 28syl 14 . . . . . . 7  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  ( R `  ( `' G `  v ) )  = 
<. ( 1st `  ( R `  ( `' G `  v )
) ) ,  ( 2nd `  ( R `
 ( `' G `  v ) ) )
>. )
301adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  C  e.  ZZ )
312adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  A  e.  S )
323adantr 276 . . . . . . . . . 10  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  S  C_  T
)
334adantlr 477 . . . . . . . . . 10  |-  ( ( ( ph  /\  v  e.  ( ZZ>= `  C )
)  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S
) )  ->  (
x F y )  e.  S )
3430, 31, 32, 33, 5, 20, 17frecuzrdgg 10525 . . . . . . . . 9  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  ( 1st `  ( R `  ( `' G `  v ) ) )  =  ( G `  ( `' G `  v ) ) )
35 f1ocnvfv2 5828 . . . . . . . . . 10  |-  ( ( G : om -1-1-onto-> ( ZZ>= `  C )  /\  v  e.  ( ZZ>=
`  C ) )  ->  ( G `  ( `' G `  v ) )  =  v )
3618, 35sylan 283 . . . . . . . . 9  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  ( G `  ( `' G `  v ) )  =  v )
3734, 36eqtrd 2229 . . . . . . . 8  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  ( 1st `  ( R `  ( `' G `  v ) ) )  =  v )
3837opeq1d 3815 . . . . . . 7  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  <. ( 1st `  ( R `  ( `' G `  v ) ) ) ,  ( 2nd `  ( R `
 ( `' G `  v ) ) )
>.  =  <. v ,  ( 2nd `  ( R `  ( `' G `  v )
) ) >. )
3929, 38eqtrd 2229 . . . . . 6  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  ( R `  ( `' G `  v ) )  = 
<. v ,  ( 2nd `  ( R `  ( `' G `  v ) ) ) >. )
4039, 26eqeltrrd 2274 . . . . 5  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  <. v ,  ( 2nd `  ( R `  ( `' G `  v )
) ) >.  e.  ran  R )
41 simpr 110 . . . . . 6  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  v  e.  ( ZZ>= `  C )
)
42 xp2nd 6233 . . . . . . 7  |-  ( ( R `  ( `' G `  v ) )  e.  ( (
ZZ>= `  C )  X.  S )  ->  ( 2nd `  ( R `  ( `' G `  v ) ) )  e.  S
)
4327, 42syl 14 . . . . . 6  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  ( 2nd `  ( R `  ( `' G `  v ) ) )  e.  S
)
44 opeldmg 4872 . . . . . 6  |-  ( ( v  e.  ( ZZ>= `  C )  /\  ( 2nd `  ( R `  ( `' G `  v ) ) )  e.  S
)  ->  ( <. v ,  ( 2nd `  ( R `  ( `' G `  v )
) ) >.  e.  ran  R  ->  v  e.  dom  ran 
R ) )
4541, 43, 44syl2anc 411 . . . . 5  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  ( <. v ,  ( 2nd `  ( R `  ( `' G `  v )
) ) >.  e.  ran  R  ->  v  e.  dom  ran 
R ) )
4640, 45mpd 13 . . . 4  |-  ( (
ph  /\  v  e.  ( ZZ>= `  C )
)  ->  v  e.  dom  ran  R )
4746ex 115 . . 3  |-  ( ph  ->  ( v  e.  (
ZZ>= `  C )  -> 
v  e.  dom  ran  R ) )
4847ssrdv 3190 . 2  |-  ( ph  ->  ( ZZ>= `  C )  C_ 
dom  ran  R )
4912, 48eqssd 3201 1  |-  ( ph  ->  dom  ran  R  =  ( ZZ>= `  C )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167    C_ wss 3157   <.cop 3626    |-> cmpt 4095   omcom 4627    X. cxp 4662   `'ccnv 4663   dom cdm 4664   ran crn 4665   Fun wfun 5253   -->wf 5255   -1-1-onto->wf1o 5258   ` cfv 5259  (class class class)co 5925    e. cmpo 5927   1stc1st 6205   2ndc2nd 6206  freccfrec 6457   1c1 7897    + caddc 7899   ZZcz 9343   ZZ>=cuz 9618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-1st 6207  df-2nd 6208  df-recs 6372  df-frec 6458  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-n0 9267  df-z 9344  df-uz 9619
This theorem is referenced by:  frecuzrdgdom  10527
  Copyright terms: Public domain W3C validator