| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > updjudhf | Unicode version | ||
| Description: The mapping of an element of the disjoint union to the value of the corresponding function is a function. (Contributed by AV, 26-Jun-2022.) |
| Ref | Expression |
|---|---|
| updjud.f |
|
| updjud.g |
|
| updjudhf.h |
|
| Ref | Expression |
|---|---|
| updjudhf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldju2ndl 7235 |
. . . . . 6
| |
| 2 | 1 | ex 115 |
. . . . 5
|
| 3 | updjud.f |
. . . . . 6
| |
| 4 | ffvelcdm 5767 |
. . . . . . 7
| |
| 5 | 4 | ex 115 |
. . . . . 6
|
| 6 | 3, 5 | syl 14 |
. . . . 5
|
| 7 | 2, 6 | sylan9r 410 |
. . . 4
|
| 8 | 7 | imp 124 |
. . 3
|
| 9 | df-ne 2401 |
. . . . 5
| |
| 10 | eldju2ndr 7236 |
. . . . . . 7
| |
| 11 | 10 | ex 115 |
. . . . . 6
|
| 12 | updjud.g |
. . . . . . 7
| |
| 13 | ffvelcdm 5767 |
. . . . . . . 8
| |
| 14 | 13 | ex 115 |
. . . . . . 7
|
| 15 | 12, 14 | syl 14 |
. . . . . 6
|
| 16 | 11, 15 | sylan9r 410 |
. . . . 5
|
| 17 | 9, 16 | biimtrrid 153 |
. . . 4
|
| 18 | 17 | imp 124 |
. . 3
|
| 19 | eldju1st 7234 |
. . . . . 6
| |
| 20 | 1n0 6576 |
. . . . . . . 8
| |
| 21 | neeq1 2413 |
. . . . . . . 8
| |
| 22 | 20, 21 | mpbiri 168 |
. . . . . . 7
|
| 23 | 22 | orim2i 766 |
. . . . . 6
|
| 24 | 19, 23 | syl 14 |
. . . . 5
|
| 25 | 24 | adantl 277 |
. . . 4
|
| 26 | dcne 2411 |
. . . 4
| |
| 27 | 25, 26 | sylibr 134 |
. . 3
|
| 28 | 8, 18, 27 | ifcldadc 3632 |
. 2
|
| 29 | updjudhf.h |
. 2
| |
| 30 | 28, 29 | fmptd 5788 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4523 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4383 df-iord 4456 df-on 4458 df-suc 4461 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-f1 5322 df-fo 5323 df-f1o 5324 df-fv 5325 df-1st 6284 df-2nd 6285 df-1o 6560 df-dju 7201 df-inl 7210 df-inr 7211 |
| This theorem is referenced by: updjudhcoinlf 7243 updjudhcoinrg 7244 updjud 7245 |
| Copyright terms: Public domain | W3C validator |