ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  updjudhf Unicode version

Theorem updjudhf 7242
Description: The mapping of an element of the disjoint union to the value of the corresponding function is a function. (Contributed by AV, 26-Jun-2022.)
Hypotheses
Ref Expression
updjud.f  |-  ( ph  ->  F : A --> C )
updjud.g  |-  ( ph  ->  G : B --> C )
updjudhf.h  |-  H  =  ( x  e.  ( A B )  |->  if ( ( 1st `  x
)  =  (/) ,  ( F `  ( 2nd `  x ) ) ,  ( G `  ( 2nd `  x ) ) ) )
Assertion
Ref Expression
updjudhf  |-  ( ph  ->  H : ( A B ) --> C )
Distinct variable groups:    x, A    x, B    x, C    ph, x
Allowed substitution hints:    F( x)    G( x)    H( x)

Proof of Theorem updjudhf
StepHypRef Expression
1 eldju2ndl 7235 . . . . . 6  |-  ( ( x  e.  ( A B )  /\  ( 1st `  x )  =  (/) )  ->  ( 2nd `  x )  e.  A
)
21ex 115 . . . . 5  |-  ( x  e.  ( A B )  ->  ( ( 1st `  x )  =  (/)  ->  ( 2nd `  x
)  e.  A ) )
3 updjud.f . . . . . 6  |-  ( ph  ->  F : A --> C )
4 ffvelcdm 5767 . . . . . . 7  |-  ( ( F : A --> C  /\  ( 2nd `  x )  e.  A )  -> 
( F `  ( 2nd `  x ) )  e.  C )
54ex 115 . . . . . 6  |-  ( F : A --> C  -> 
( ( 2nd `  x
)  e.  A  -> 
( F `  ( 2nd `  x ) )  e.  C ) )
63, 5syl 14 . . . . 5  |-  ( ph  ->  ( ( 2nd `  x
)  e.  A  -> 
( F `  ( 2nd `  x ) )  e.  C ) )
72, 6sylan9r 410 . . . 4  |-  ( (
ph  /\  x  e.  ( A B ) )  ->  ( ( 1st `  x )  =  (/)  ->  ( F `  ( 2nd `  x ) )  e.  C ) )
87imp 124 . . 3  |-  ( ( ( ph  /\  x  e.  ( A B )
)  /\  ( 1st `  x )  =  (/) )  ->  ( F `  ( 2nd `  x ) )  e.  C )
9 df-ne 2401 . . . . 5  |-  ( ( 1st `  x )  =/=  (/)  <->  -.  ( 1st `  x )  =  (/) )
10 eldju2ndr 7236 . . . . . . 7  |-  ( ( x  e.  ( A B )  /\  ( 1st `  x )  =/=  (/) )  ->  ( 2nd `  x )  e.  B
)
1110ex 115 . . . . . 6  |-  ( x  e.  ( A B )  ->  ( ( 1st `  x )  =/=  (/)  ->  ( 2nd `  x )  e.  B ) )
12 updjud.g . . . . . . 7  |-  ( ph  ->  G : B --> C )
13 ffvelcdm 5767 . . . . . . . 8  |-  ( ( G : B --> C  /\  ( 2nd `  x )  e.  B )  -> 
( G `  ( 2nd `  x ) )  e.  C )
1413ex 115 . . . . . . 7  |-  ( G : B --> C  -> 
( ( 2nd `  x
)  e.  B  -> 
( G `  ( 2nd `  x ) )  e.  C ) )
1512, 14syl 14 . . . . . 6  |-  ( ph  ->  ( ( 2nd `  x
)  e.  B  -> 
( G `  ( 2nd `  x ) )  e.  C ) )
1611, 15sylan9r 410 . . . . 5  |-  ( (
ph  /\  x  e.  ( A B ) )  ->  ( ( 1st `  x )  =/=  (/)  ->  ( G `  ( 2nd `  x ) )  e.  C ) )
179, 16biimtrrid 153 . . . 4  |-  ( (
ph  /\  x  e.  ( A B ) )  ->  ( -.  ( 1st `  x )  =  (/)  ->  ( G `  ( 2nd `  x ) )  e.  C ) )
1817imp 124 . . 3  |-  ( ( ( ph  /\  x  e.  ( A B )
)  /\  -.  ( 1st `  x )  =  (/) )  ->  ( G `
 ( 2nd `  x
) )  e.  C
)
19 eldju1st 7234 . . . . . 6  |-  ( x  e.  ( A B )  ->  ( ( 1st `  x )  =  (/)  \/  ( 1st `  x
)  =  1o ) )
20 1n0 6576 . . . . . . . 8  |-  1o  =/=  (/)
21 neeq1 2413 . . . . . . . 8  |-  ( ( 1st `  x )  =  1o  ->  (
( 1st `  x
)  =/=  (/)  <->  1o  =/=  (/) ) )
2220, 21mpbiri 168 . . . . . . 7  |-  ( ( 1st `  x )  =  1o  ->  ( 1st `  x )  =/=  (/) )
2322orim2i 766 . . . . . 6  |-  ( ( ( 1st `  x
)  =  (/)  \/  ( 1st `  x )  =  1o )  ->  (
( 1st `  x
)  =  (/)  \/  ( 1st `  x )  =/=  (/) ) )
2419, 23syl 14 . . . . 5  |-  ( x  e.  ( A B )  ->  ( ( 1st `  x )  =  (/)  \/  ( 1st `  x
)  =/=  (/) ) )
2524adantl 277 . . . 4  |-  ( (
ph  /\  x  e.  ( A B ) )  ->  ( ( 1st `  x )  =  (/)  \/  ( 1st `  x
)  =/=  (/) ) )
26 dcne 2411 . . . 4  |-  (DECID  ( 1st `  x )  =  (/)  <->  (
( 1st `  x
)  =  (/)  \/  ( 1st `  x )  =/=  (/) ) )
2725, 26sylibr 134 . . 3  |-  ( (
ph  /\  x  e.  ( A B ) )  -> DECID 
( 1st `  x
)  =  (/) )
288, 18, 27ifcldadc 3632 . 2  |-  ( (
ph  /\  x  e.  ( A B ) )  ->  if ( ( 1st `  x )  =  (/) ,  ( F `
 ( 2nd `  x
) ) ,  ( G `  ( 2nd `  x ) ) )  e.  C )
29 updjudhf.h . 2  |-  H  =  ( x  e.  ( A B )  |->  if ( ( 1st `  x
)  =  (/) ,  ( F `  ( 2nd `  x ) ) ,  ( G `  ( 2nd `  x ) ) ) )
3028, 29fmptd 5788 1  |-  ( ph  ->  H : ( A B ) --> C )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 713  DECID wdc 839    = wceq 1395    e. wcel 2200    =/= wne 2400   (/)c0 3491   ifcif 3602    |-> cmpt 4144   -->wf 5313   ` cfv 5317   1stc1st 6282   2ndc2nd 6283   1oc1o 6553   ⊔ cdju 7200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-iord 4456  df-on 4458  df-suc 4461  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-1st 6284  df-2nd 6285  df-1o 6560  df-dju 7201  df-inl 7210  df-inr 7211
This theorem is referenced by:  updjudhcoinlf  7243  updjudhcoinrg  7244  updjud  7245
  Copyright terms: Public domain W3C validator