ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  updjudhf Unicode version

Theorem updjudhf 6972
Description: The mapping of an element of the disjoint union to the value of the corresponding function is a function. (Contributed by AV, 26-Jun-2022.)
Hypotheses
Ref Expression
updjud.f  |-  ( ph  ->  F : A --> C )
updjud.g  |-  ( ph  ->  G : B --> C )
updjudhf.h  |-  H  =  ( x  e.  ( A B )  |->  if ( ( 1st `  x
)  =  (/) ,  ( F `  ( 2nd `  x ) ) ,  ( G `  ( 2nd `  x ) ) ) )
Assertion
Ref Expression
updjudhf  |-  ( ph  ->  H : ( A B ) --> C )
Distinct variable groups:    x, A    x, B    x, C    ph, x
Allowed substitution hints:    F( x)    G( x)    H( x)

Proof of Theorem updjudhf
StepHypRef Expression
1 eldju2ndl 6965 . . . . . 6  |-  ( ( x  e.  ( A B )  /\  ( 1st `  x )  =  (/) )  ->  ( 2nd `  x )  e.  A
)
21ex 114 . . . . 5  |-  ( x  e.  ( A B )  ->  ( ( 1st `  x )  =  (/)  ->  ( 2nd `  x
)  e.  A ) )
3 updjud.f . . . . . 6  |-  ( ph  ->  F : A --> C )
4 ffvelrn 5561 . . . . . . 7  |-  ( ( F : A --> C  /\  ( 2nd `  x )  e.  A )  -> 
( F `  ( 2nd `  x ) )  e.  C )
54ex 114 . . . . . 6  |-  ( F : A --> C  -> 
( ( 2nd `  x
)  e.  A  -> 
( F `  ( 2nd `  x ) )  e.  C ) )
63, 5syl 14 . . . . 5  |-  ( ph  ->  ( ( 2nd `  x
)  e.  A  -> 
( F `  ( 2nd `  x ) )  e.  C ) )
72, 6sylan9r 408 . . . 4  |-  ( (
ph  /\  x  e.  ( A B ) )  ->  ( ( 1st `  x )  =  (/)  ->  ( F `  ( 2nd `  x ) )  e.  C ) )
87imp 123 . . 3  |-  ( ( ( ph  /\  x  e.  ( A B )
)  /\  ( 1st `  x )  =  (/) )  ->  ( F `  ( 2nd `  x ) )  e.  C )
9 df-ne 2310 . . . . 5  |-  ( ( 1st `  x )  =/=  (/)  <->  -.  ( 1st `  x )  =  (/) )
10 eldju2ndr 6966 . . . . . . 7  |-  ( ( x  e.  ( A B )  /\  ( 1st `  x )  =/=  (/) )  ->  ( 2nd `  x )  e.  B
)
1110ex 114 . . . . . 6  |-  ( x  e.  ( A B )  ->  ( ( 1st `  x )  =/=  (/)  ->  ( 2nd `  x )  e.  B ) )
12 updjud.g . . . . . . 7  |-  ( ph  ->  G : B --> C )
13 ffvelrn 5561 . . . . . . . 8  |-  ( ( G : B --> C  /\  ( 2nd `  x )  e.  B )  -> 
( G `  ( 2nd `  x ) )  e.  C )
1413ex 114 . . . . . . 7  |-  ( G : B --> C  -> 
( ( 2nd `  x
)  e.  B  -> 
( G `  ( 2nd `  x ) )  e.  C ) )
1512, 14syl 14 . . . . . 6  |-  ( ph  ->  ( ( 2nd `  x
)  e.  B  -> 
( G `  ( 2nd `  x ) )  e.  C ) )
1611, 15sylan9r 408 . . . . 5  |-  ( (
ph  /\  x  e.  ( A B ) )  ->  ( ( 1st `  x )  =/=  (/)  ->  ( G `  ( 2nd `  x ) )  e.  C ) )
179, 16syl5bir 152 . . . 4  |-  ( (
ph  /\  x  e.  ( A B ) )  ->  ( -.  ( 1st `  x )  =  (/)  ->  ( G `  ( 2nd `  x ) )  e.  C ) )
1817imp 123 . . 3  |-  ( ( ( ph  /\  x  e.  ( A B )
)  /\  -.  ( 1st `  x )  =  (/) )  ->  ( G `
 ( 2nd `  x
) )  e.  C
)
19 eldju1st 6964 . . . . . 6  |-  ( x  e.  ( A B )  ->  ( ( 1st `  x )  =  (/)  \/  ( 1st `  x
)  =  1o ) )
20 1n0 6337 . . . . . . . 8  |-  1o  =/=  (/)
21 neeq1 2322 . . . . . . . 8  |-  ( ( 1st `  x )  =  1o  ->  (
( 1st `  x
)  =/=  (/)  <->  1o  =/=  (/) ) )
2220, 21mpbiri 167 . . . . . . 7  |-  ( ( 1st `  x )  =  1o  ->  ( 1st `  x )  =/=  (/) )
2322orim2i 751 . . . . . 6  |-  ( ( ( 1st `  x
)  =  (/)  \/  ( 1st `  x )  =  1o )  ->  (
( 1st `  x
)  =  (/)  \/  ( 1st `  x )  =/=  (/) ) )
2419, 23syl 14 . . . . 5  |-  ( x  e.  ( A B )  ->  ( ( 1st `  x )  =  (/)  \/  ( 1st `  x
)  =/=  (/) ) )
2524adantl 275 . . . 4  |-  ( (
ph  /\  x  e.  ( A B ) )  ->  ( ( 1st `  x )  =  (/)  \/  ( 1st `  x
)  =/=  (/) ) )
26 dcne 2320 . . . 4  |-  (DECID  ( 1st `  x )  =  (/)  <->  (
( 1st `  x
)  =  (/)  \/  ( 1st `  x )  =/=  (/) ) )
2725, 26sylibr 133 . . 3  |-  ( (
ph  /\  x  e.  ( A B ) )  -> DECID 
( 1st `  x
)  =  (/) )
288, 18, 27ifcldadc 3506 . 2  |-  ( (
ph  /\  x  e.  ( A B ) )  ->  if ( ( 1st `  x )  =  (/) ,  ( F `
 ( 2nd `  x
) ) ,  ( G `  ( 2nd `  x ) ) )  e.  C )
29 updjudhf.h . 2  |-  H  =  ( x  e.  ( A B )  |->  if ( ( 1st `  x
)  =  (/) ,  ( F `  ( 2nd `  x ) ) ,  ( G `  ( 2nd `  x ) ) ) )
3028, 29fmptd 5582 1  |-  ( ph  ->  H : ( A B ) --> C )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    \/ wo 698  DECID wdc 820    = wceq 1332    e. wcel 1481    =/= wne 2309   (/)c0 3368   ifcif 3479    |-> cmpt 3997   -->wf 5127   ` cfv 5131   1stc1st 6044   2ndc2nd 6045   1oc1o 6314   ⊔ cdju 6930
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-nul 4062  ax-pow 4106  ax-pr 4139  ax-un 4363
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-nul 3369  df-if 3480  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-br 3938  df-opab 3998  df-mpt 3999  df-tr 4035  df-id 4223  df-iord 4296  df-on 4298  df-suc 4301  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139  df-1st 6046  df-2nd 6047  df-1o 6321  df-dju 6931  df-inl 6940  df-inr 6941
This theorem is referenced by:  updjudhcoinlf  6973  updjudhcoinrg  6974  updjud  6975
  Copyright terms: Public domain W3C validator