Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > updjudhf | Unicode version |
Description: The mapping of an element of the disjoint union to the value of the corresponding function is a function. (Contributed by AV, 26-Jun-2022.) |
Ref | Expression |
---|---|
updjud.f | |
updjud.g | |
updjudhf.h | ⊔ |
Ref | Expression |
---|---|
updjudhf | ⊔ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldju2ndl 7037 | . . . . . 6 ⊔ | |
2 | 1 | ex 114 | . . . . 5 ⊔ |
3 | updjud.f | . . . . . 6 | |
4 | ffvelrn 5618 | . . . . . . 7 | |
5 | 4 | ex 114 | . . . . . 6 |
6 | 3, 5 | syl 14 | . . . . 5 |
7 | 2, 6 | sylan9r 408 | . . . 4 ⊔ |
8 | 7 | imp 123 | . . 3 ⊔ |
9 | df-ne 2337 | . . . . 5 | |
10 | eldju2ndr 7038 | . . . . . . 7 ⊔ | |
11 | 10 | ex 114 | . . . . . 6 ⊔ |
12 | updjud.g | . . . . . . 7 | |
13 | ffvelrn 5618 | . . . . . . . 8 | |
14 | 13 | ex 114 | . . . . . . 7 |
15 | 12, 14 | syl 14 | . . . . . 6 |
16 | 11, 15 | sylan9r 408 | . . . . 5 ⊔ |
17 | 9, 16 | syl5bir 152 | . . . 4 ⊔ |
18 | 17 | imp 123 | . . 3 ⊔ |
19 | eldju1st 7036 | . . . . . 6 ⊔ | |
20 | 1n0 6400 | . . . . . . . 8 | |
21 | neeq1 2349 | . . . . . . . 8 | |
22 | 20, 21 | mpbiri 167 | . . . . . . 7 |
23 | 22 | orim2i 751 | . . . . . 6 |
24 | 19, 23 | syl 14 | . . . . 5 ⊔ |
25 | 24 | adantl 275 | . . . 4 ⊔ |
26 | dcne 2347 | . . . 4 DECID | |
27 | 25, 26 | sylibr 133 | . . 3 ⊔ DECID |
28 | 8, 18, 27 | ifcldadc 3549 | . 2 ⊔ |
29 | updjudhf.h | . 2 ⊔ | |
30 | 28, 29 | fmptd 5639 | 1 ⊔ |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wo 698 DECID wdc 824 wceq 1343 wcel 2136 wne 2336 c0 3409 cif 3520 cmpt 4043 wf 5184 cfv 5188 c1st 6106 c2nd 6107 c1o 6377 ⊔ cdju 7002 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-1st 6108 df-2nd 6109 df-1o 6384 df-dju 7003 df-inl 7012 df-inr 7013 |
This theorem is referenced by: updjudhcoinlf 7045 updjudhcoinrg 7046 updjud 7047 |
Copyright terms: Public domain | W3C validator |