| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > updjudhf | Unicode version | ||
| Description: The mapping of an element of the disjoint union to the value of the corresponding function is a function. (Contributed by AV, 26-Jun-2022.) |
| Ref | Expression |
|---|---|
| updjud.f |
|
| updjud.g |
|
| updjudhf.h |
|
| Ref | Expression |
|---|---|
| updjudhf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldju2ndl 7174 |
. . . . . 6
| |
| 2 | 1 | ex 115 |
. . . . 5
|
| 3 | updjud.f |
. . . . . 6
| |
| 4 | ffvelcdm 5713 |
. . . . . . 7
| |
| 5 | 4 | ex 115 |
. . . . . 6
|
| 6 | 3, 5 | syl 14 |
. . . . 5
|
| 7 | 2, 6 | sylan9r 410 |
. . . 4
|
| 8 | 7 | imp 124 |
. . 3
|
| 9 | df-ne 2377 |
. . . . 5
| |
| 10 | eldju2ndr 7175 |
. . . . . . 7
| |
| 11 | 10 | ex 115 |
. . . . . 6
|
| 12 | updjud.g |
. . . . . . 7
| |
| 13 | ffvelcdm 5713 |
. . . . . . . 8
| |
| 14 | 13 | ex 115 |
. . . . . . 7
|
| 15 | 12, 14 | syl 14 |
. . . . . 6
|
| 16 | 11, 15 | sylan9r 410 |
. . . . 5
|
| 17 | 9, 16 | biimtrrid 153 |
. . . 4
|
| 18 | 17 | imp 124 |
. . 3
|
| 19 | eldju1st 7173 |
. . . . . 6
| |
| 20 | 1n0 6518 |
. . . . . . . 8
| |
| 21 | neeq1 2389 |
. . . . . . . 8
| |
| 22 | 20, 21 | mpbiri 168 |
. . . . . . 7
|
| 23 | 22 | orim2i 763 |
. . . . . 6
|
| 24 | 19, 23 | syl 14 |
. . . . 5
|
| 25 | 24 | adantl 277 |
. . . 4
|
| 26 | dcne 2387 |
. . . 4
| |
| 27 | 25, 26 | sylibr 134 |
. . 3
|
| 28 | 8, 18, 27 | ifcldadc 3600 |
. 2
|
| 29 | updjudhf.h |
. 2
| |
| 30 | 28, 29 | fmptd 5734 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-id 4340 df-iord 4413 df-on 4415 df-suc 4418 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-1st 6226 df-2nd 6227 df-1o 6502 df-dju 7140 df-inl 7149 df-inr 7150 |
| This theorem is referenced by: updjudhcoinlf 7182 updjudhcoinrg 7183 updjud 7184 |
| Copyright terms: Public domain | W3C validator |