ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  updjudhf Unicode version

Theorem updjudhf 7140
Description: The mapping of an element of the disjoint union to the value of the corresponding function is a function. (Contributed by AV, 26-Jun-2022.)
Hypotheses
Ref Expression
updjud.f  |-  ( ph  ->  F : A --> C )
updjud.g  |-  ( ph  ->  G : B --> C )
updjudhf.h  |-  H  =  ( x  e.  ( A B )  |->  if ( ( 1st `  x
)  =  (/) ,  ( F `  ( 2nd `  x ) ) ,  ( G `  ( 2nd `  x ) ) ) )
Assertion
Ref Expression
updjudhf  |-  ( ph  ->  H : ( A B ) --> C )
Distinct variable groups:    x, A    x, B    x, C    ph, x
Allowed substitution hints:    F( x)    G( x)    H( x)

Proof of Theorem updjudhf
StepHypRef Expression
1 eldju2ndl 7133 . . . . . 6  |-  ( ( x  e.  ( A B )  /\  ( 1st `  x )  =  (/) )  ->  ( 2nd `  x )  e.  A
)
21ex 115 . . . . 5  |-  ( x  e.  ( A B )  ->  ( ( 1st `  x )  =  (/)  ->  ( 2nd `  x
)  e.  A ) )
3 updjud.f . . . . . 6  |-  ( ph  ->  F : A --> C )
4 ffvelcdm 5692 . . . . . . 7  |-  ( ( F : A --> C  /\  ( 2nd `  x )  e.  A )  -> 
( F `  ( 2nd `  x ) )  e.  C )
54ex 115 . . . . . 6  |-  ( F : A --> C  -> 
( ( 2nd `  x
)  e.  A  -> 
( F `  ( 2nd `  x ) )  e.  C ) )
63, 5syl 14 . . . . 5  |-  ( ph  ->  ( ( 2nd `  x
)  e.  A  -> 
( F `  ( 2nd `  x ) )  e.  C ) )
72, 6sylan9r 410 . . . 4  |-  ( (
ph  /\  x  e.  ( A B ) )  ->  ( ( 1st `  x )  =  (/)  ->  ( F `  ( 2nd `  x ) )  e.  C ) )
87imp 124 . . 3  |-  ( ( ( ph  /\  x  e.  ( A B )
)  /\  ( 1st `  x )  =  (/) )  ->  ( F `  ( 2nd `  x ) )  e.  C )
9 df-ne 2365 . . . . 5  |-  ( ( 1st `  x )  =/=  (/)  <->  -.  ( 1st `  x )  =  (/) )
10 eldju2ndr 7134 . . . . . . 7  |-  ( ( x  e.  ( A B )  /\  ( 1st `  x )  =/=  (/) )  ->  ( 2nd `  x )  e.  B
)
1110ex 115 . . . . . 6  |-  ( x  e.  ( A B )  ->  ( ( 1st `  x )  =/=  (/)  ->  ( 2nd `  x )  e.  B ) )
12 updjud.g . . . . . . 7  |-  ( ph  ->  G : B --> C )
13 ffvelcdm 5692 . . . . . . . 8  |-  ( ( G : B --> C  /\  ( 2nd `  x )  e.  B )  -> 
( G `  ( 2nd `  x ) )  e.  C )
1413ex 115 . . . . . . 7  |-  ( G : B --> C  -> 
( ( 2nd `  x
)  e.  B  -> 
( G `  ( 2nd `  x ) )  e.  C ) )
1512, 14syl 14 . . . . . 6  |-  ( ph  ->  ( ( 2nd `  x
)  e.  B  -> 
( G `  ( 2nd `  x ) )  e.  C ) )
1611, 15sylan9r 410 . . . . 5  |-  ( (
ph  /\  x  e.  ( A B ) )  ->  ( ( 1st `  x )  =/=  (/)  ->  ( G `  ( 2nd `  x ) )  e.  C ) )
179, 16biimtrrid 153 . . . 4  |-  ( (
ph  /\  x  e.  ( A B ) )  ->  ( -.  ( 1st `  x )  =  (/)  ->  ( G `  ( 2nd `  x ) )  e.  C ) )
1817imp 124 . . 3  |-  ( ( ( ph  /\  x  e.  ( A B )
)  /\  -.  ( 1st `  x )  =  (/) )  ->  ( G `
 ( 2nd `  x
) )  e.  C
)
19 eldju1st 7132 . . . . . 6  |-  ( x  e.  ( A B )  ->  ( ( 1st `  x )  =  (/)  \/  ( 1st `  x
)  =  1o ) )
20 1n0 6487 . . . . . . . 8  |-  1o  =/=  (/)
21 neeq1 2377 . . . . . . . 8  |-  ( ( 1st `  x )  =  1o  ->  (
( 1st `  x
)  =/=  (/)  <->  1o  =/=  (/) ) )
2220, 21mpbiri 168 . . . . . . 7  |-  ( ( 1st `  x )  =  1o  ->  ( 1st `  x )  =/=  (/) )
2322orim2i 762 . . . . . 6  |-  ( ( ( 1st `  x
)  =  (/)  \/  ( 1st `  x )  =  1o )  ->  (
( 1st `  x
)  =  (/)  \/  ( 1st `  x )  =/=  (/) ) )
2419, 23syl 14 . . . . 5  |-  ( x  e.  ( A B )  ->  ( ( 1st `  x )  =  (/)  \/  ( 1st `  x
)  =/=  (/) ) )
2524adantl 277 . . . 4  |-  ( (
ph  /\  x  e.  ( A B ) )  ->  ( ( 1st `  x )  =  (/)  \/  ( 1st `  x
)  =/=  (/) ) )
26 dcne 2375 . . . 4  |-  (DECID  ( 1st `  x )  =  (/)  <->  (
( 1st `  x
)  =  (/)  \/  ( 1st `  x )  =/=  (/) ) )
2725, 26sylibr 134 . . 3  |-  ( (
ph  /\  x  e.  ( A B ) )  -> DECID 
( 1st `  x
)  =  (/) )
288, 18, 27ifcldadc 3587 . 2  |-  ( (
ph  /\  x  e.  ( A B ) )  ->  if ( ( 1st `  x )  =  (/) ,  ( F `
 ( 2nd `  x
) ) ,  ( G `  ( 2nd `  x ) ) )  e.  C )
29 updjudhf.h . 2  |-  H  =  ( x  e.  ( A B )  |->  if ( ( 1st `  x
)  =  (/) ,  ( F `  ( 2nd `  x ) ) ,  ( G `  ( 2nd `  x ) ) ) )
3028, 29fmptd 5713 1  |-  ( ph  ->  H : ( A B ) --> C )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 709  DECID wdc 835    = wceq 1364    e. wcel 2164    =/= wne 2364   (/)c0 3447   ifcif 3558    |-> cmpt 4091   -->wf 5251   ` cfv 5255   1stc1st 6193   2ndc2nd 6194   1oc1o 6464   ⊔ cdju 7098
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-nul 4156  ax-pow 4204  ax-pr 4239  ax-un 4465
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2987  df-csb 3082  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-if 3559  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-mpt 4093  df-tr 4129  df-id 4325  df-iord 4398  df-on 4400  df-suc 4403  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-ima 4673  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-1st 6195  df-2nd 6196  df-1o 6471  df-dju 7099  df-inl 7108  df-inr 7109
This theorem is referenced by:  updjudhcoinlf  7141  updjudhcoinrg  7142  updjud  7143
  Copyright terms: Public domain W3C validator