| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > updjudhf | Unicode version | ||
| Description: The mapping of an element of the disjoint union to the value of the corresponding function is a function. (Contributed by AV, 26-Jun-2022.) |
| Ref | Expression |
|---|---|
| updjud.f |
|
| updjud.g |
|
| updjudhf.h |
|
| Ref | Expression |
|---|---|
| updjudhf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldju2ndl 7195 |
. . . . . 6
| |
| 2 | 1 | ex 115 |
. . . . 5
|
| 3 | updjud.f |
. . . . . 6
| |
| 4 | ffvelcdm 5731 |
. . . . . . 7
| |
| 5 | 4 | ex 115 |
. . . . . 6
|
| 6 | 3, 5 | syl 14 |
. . . . 5
|
| 7 | 2, 6 | sylan9r 410 |
. . . 4
|
| 8 | 7 | imp 124 |
. . 3
|
| 9 | df-ne 2378 |
. . . . 5
| |
| 10 | eldju2ndr 7196 |
. . . . . . 7
| |
| 11 | 10 | ex 115 |
. . . . . 6
|
| 12 | updjud.g |
. . . . . . 7
| |
| 13 | ffvelcdm 5731 |
. . . . . . . 8
| |
| 14 | 13 | ex 115 |
. . . . . . 7
|
| 15 | 12, 14 | syl 14 |
. . . . . 6
|
| 16 | 11, 15 | sylan9r 410 |
. . . . 5
|
| 17 | 9, 16 | biimtrrid 153 |
. . . 4
|
| 18 | 17 | imp 124 |
. . 3
|
| 19 | eldju1st 7194 |
. . . . . 6
| |
| 20 | 1n0 6536 |
. . . . . . . 8
| |
| 21 | neeq1 2390 |
. . . . . . . 8
| |
| 22 | 20, 21 | mpbiri 168 |
. . . . . . 7
|
| 23 | 22 | orim2i 763 |
. . . . . 6
|
| 24 | 19, 23 | syl 14 |
. . . . 5
|
| 25 | 24 | adantl 277 |
. . . 4
|
| 26 | dcne 2388 |
. . . 4
| |
| 27 | 25, 26 | sylibr 134 |
. . 3
|
| 28 | 8, 18, 27 | ifcldadc 3605 |
. 2
|
| 29 | updjudhf.h |
. 2
| |
| 30 | 28, 29 | fmptd 5752 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-nul 4181 ax-pow 4229 ax-pr 4264 ax-un 4493 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-br 4055 df-opab 4117 df-mpt 4118 df-tr 4154 df-id 4353 df-iord 4426 df-on 4428 df-suc 4431 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-f1 5290 df-fo 5291 df-f1o 5292 df-fv 5293 df-1st 6244 df-2nd 6245 df-1o 6520 df-dju 7161 df-inl 7170 df-inr 7171 |
| This theorem is referenced by: updjudhcoinlf 7203 updjudhcoinrg 7204 updjud 7205 |
| Copyright terms: Public domain | W3C validator |