Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > updjudhf | Unicode version |
Description: The mapping of an element of the disjoint union to the value of the corresponding function is a function. (Contributed by AV, 26-Jun-2022.) |
Ref | Expression |
---|---|
updjud.f | |
updjud.g | |
updjudhf.h | ⊔ |
Ref | Expression |
---|---|
updjudhf | ⊔ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldju2ndl 7049 | . . . . . 6 ⊔ | |
2 | 1 | ex 114 | . . . . 5 ⊔ |
3 | updjud.f | . . . . . 6 | |
4 | ffvelrn 5629 | . . . . . . 7 | |
5 | 4 | ex 114 | . . . . . 6 |
6 | 3, 5 | syl 14 | . . . . 5 |
7 | 2, 6 | sylan9r 408 | . . . 4 ⊔ |
8 | 7 | imp 123 | . . 3 ⊔ |
9 | df-ne 2341 | . . . . 5 | |
10 | eldju2ndr 7050 | . . . . . . 7 ⊔ | |
11 | 10 | ex 114 | . . . . . 6 ⊔ |
12 | updjud.g | . . . . . . 7 | |
13 | ffvelrn 5629 | . . . . . . . 8 | |
14 | 13 | ex 114 | . . . . . . 7 |
15 | 12, 14 | syl 14 | . . . . . 6 |
16 | 11, 15 | sylan9r 408 | . . . . 5 ⊔ |
17 | 9, 16 | syl5bir 152 | . . . 4 ⊔ |
18 | 17 | imp 123 | . . 3 ⊔ |
19 | eldju1st 7048 | . . . . . 6 ⊔ | |
20 | 1n0 6411 | . . . . . . . 8 | |
21 | neeq1 2353 | . . . . . . . 8 | |
22 | 20, 21 | mpbiri 167 | . . . . . . 7 |
23 | 22 | orim2i 756 | . . . . . 6 |
24 | 19, 23 | syl 14 | . . . . 5 ⊔ |
25 | 24 | adantl 275 | . . . 4 ⊔ |
26 | dcne 2351 | . . . 4 DECID | |
27 | 25, 26 | sylibr 133 | . . 3 ⊔ DECID |
28 | 8, 18, 27 | ifcldadc 3555 | . 2 ⊔ |
29 | updjudhf.h | . 2 ⊔ | |
30 | 28, 29 | fmptd 5650 | 1 ⊔ |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wo 703 DECID wdc 829 wceq 1348 wcel 2141 wne 2340 c0 3414 cif 3526 cmpt 4050 wf 5194 cfv 5198 c1st 6117 c2nd 6118 c1o 6388 ⊔ cdju 7014 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-suc 4356 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-1st 6119 df-2nd 6120 df-1o 6395 df-dju 7015 df-inl 7024 df-inr 7025 |
This theorem is referenced by: updjudhcoinlf 7057 updjudhcoinrg 7058 updjud 7059 |
Copyright terms: Public domain | W3C validator |