ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  updjudhf Unicode version

Theorem updjudhf 7180
Description: The mapping of an element of the disjoint union to the value of the corresponding function is a function. (Contributed by AV, 26-Jun-2022.)
Hypotheses
Ref Expression
updjud.f  |-  ( ph  ->  F : A --> C )
updjud.g  |-  ( ph  ->  G : B --> C )
updjudhf.h  |-  H  =  ( x  e.  ( A B )  |->  if ( ( 1st `  x
)  =  (/) ,  ( F `  ( 2nd `  x ) ) ,  ( G `  ( 2nd `  x ) ) ) )
Assertion
Ref Expression
updjudhf  |-  ( ph  ->  H : ( A B ) --> C )
Distinct variable groups:    x, A    x, B    x, C    ph, x
Allowed substitution hints:    F( x)    G( x)    H( x)

Proof of Theorem updjudhf
StepHypRef Expression
1 eldju2ndl 7173 . . . . . 6  |-  ( ( x  e.  ( A B )  /\  ( 1st `  x )  =  (/) )  ->  ( 2nd `  x )  e.  A
)
21ex 115 . . . . 5  |-  ( x  e.  ( A B )  ->  ( ( 1st `  x )  =  (/)  ->  ( 2nd `  x
)  e.  A ) )
3 updjud.f . . . . . 6  |-  ( ph  ->  F : A --> C )
4 ffvelcdm 5712 . . . . . . 7  |-  ( ( F : A --> C  /\  ( 2nd `  x )  e.  A )  -> 
( F `  ( 2nd `  x ) )  e.  C )
54ex 115 . . . . . 6  |-  ( F : A --> C  -> 
( ( 2nd `  x
)  e.  A  -> 
( F `  ( 2nd `  x ) )  e.  C ) )
63, 5syl 14 . . . . 5  |-  ( ph  ->  ( ( 2nd `  x
)  e.  A  -> 
( F `  ( 2nd `  x ) )  e.  C ) )
72, 6sylan9r 410 . . . 4  |-  ( (
ph  /\  x  e.  ( A B ) )  ->  ( ( 1st `  x )  =  (/)  ->  ( F `  ( 2nd `  x ) )  e.  C ) )
87imp 124 . . 3  |-  ( ( ( ph  /\  x  e.  ( A B )
)  /\  ( 1st `  x )  =  (/) )  ->  ( F `  ( 2nd `  x ) )  e.  C )
9 df-ne 2376 . . . . 5  |-  ( ( 1st `  x )  =/=  (/)  <->  -.  ( 1st `  x )  =  (/) )
10 eldju2ndr 7174 . . . . . . 7  |-  ( ( x  e.  ( A B )  /\  ( 1st `  x )  =/=  (/) )  ->  ( 2nd `  x )  e.  B
)
1110ex 115 . . . . . 6  |-  ( x  e.  ( A B )  ->  ( ( 1st `  x )  =/=  (/)  ->  ( 2nd `  x )  e.  B ) )
12 updjud.g . . . . . . 7  |-  ( ph  ->  G : B --> C )
13 ffvelcdm 5712 . . . . . . . 8  |-  ( ( G : B --> C  /\  ( 2nd `  x )  e.  B )  -> 
( G `  ( 2nd `  x ) )  e.  C )
1413ex 115 . . . . . . 7  |-  ( G : B --> C  -> 
( ( 2nd `  x
)  e.  B  -> 
( G `  ( 2nd `  x ) )  e.  C ) )
1512, 14syl 14 . . . . . 6  |-  ( ph  ->  ( ( 2nd `  x
)  e.  B  -> 
( G `  ( 2nd `  x ) )  e.  C ) )
1611, 15sylan9r 410 . . . . 5  |-  ( (
ph  /\  x  e.  ( A B ) )  ->  ( ( 1st `  x )  =/=  (/)  ->  ( G `  ( 2nd `  x ) )  e.  C ) )
179, 16biimtrrid 153 . . . 4  |-  ( (
ph  /\  x  e.  ( A B ) )  ->  ( -.  ( 1st `  x )  =  (/)  ->  ( G `  ( 2nd `  x ) )  e.  C ) )
1817imp 124 . . 3  |-  ( ( ( ph  /\  x  e.  ( A B )
)  /\  -.  ( 1st `  x )  =  (/) )  ->  ( G `
 ( 2nd `  x
) )  e.  C
)
19 eldju1st 7172 . . . . . 6  |-  ( x  e.  ( A B )  ->  ( ( 1st `  x )  =  (/)  \/  ( 1st `  x
)  =  1o ) )
20 1n0 6517 . . . . . . . 8  |-  1o  =/=  (/)
21 neeq1 2388 . . . . . . . 8  |-  ( ( 1st `  x )  =  1o  ->  (
( 1st `  x
)  =/=  (/)  <->  1o  =/=  (/) ) )
2220, 21mpbiri 168 . . . . . . 7  |-  ( ( 1st `  x )  =  1o  ->  ( 1st `  x )  =/=  (/) )
2322orim2i 762 . . . . . 6  |-  ( ( ( 1st `  x
)  =  (/)  \/  ( 1st `  x )  =  1o )  ->  (
( 1st `  x
)  =  (/)  \/  ( 1st `  x )  =/=  (/) ) )
2419, 23syl 14 . . . . 5  |-  ( x  e.  ( A B )  ->  ( ( 1st `  x )  =  (/)  \/  ( 1st `  x
)  =/=  (/) ) )
2524adantl 277 . . . 4  |-  ( (
ph  /\  x  e.  ( A B ) )  ->  ( ( 1st `  x )  =  (/)  \/  ( 1st `  x
)  =/=  (/) ) )
26 dcne 2386 . . . 4  |-  (DECID  ( 1st `  x )  =  (/)  <->  (
( 1st `  x
)  =  (/)  \/  ( 1st `  x )  =/=  (/) ) )
2725, 26sylibr 134 . . 3  |-  ( (
ph  /\  x  e.  ( A B ) )  -> DECID 
( 1st `  x
)  =  (/) )
288, 18, 27ifcldadc 3599 . 2  |-  ( (
ph  /\  x  e.  ( A B ) )  ->  if ( ( 1st `  x )  =  (/) ,  ( F `
 ( 2nd `  x
) ) ,  ( G `  ( 2nd `  x ) ) )  e.  C )
29 updjudhf.h . 2  |-  H  =  ( x  e.  ( A B )  |->  if ( ( 1st `  x
)  =  (/) ,  ( F `  ( 2nd `  x ) ) ,  ( G `  ( 2nd `  x ) ) ) )
3028, 29fmptd 5733 1  |-  ( ph  ->  H : ( A B ) --> C )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    \/ wo 709  DECID wdc 835    = wceq 1372    e. wcel 2175    =/= wne 2375   (/)c0 3459   ifcif 3570    |-> cmpt 4104   -->wf 5266   ` cfv 5270   1stc1st 6223   2ndc2nd 6224   1oc1o 6494   ⊔ cdju 7138
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4479
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-id 4339  df-iord 4412  df-on 4414  df-suc 4417  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-1st 6225  df-2nd 6226  df-1o 6501  df-dju 7139  df-inl 7148  df-inr 7149
This theorem is referenced by:  updjudhcoinlf  7181  updjudhcoinrg  7182  updjud  7183
  Copyright terms: Public domain W3C validator