| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > updjudhf | Unicode version | ||
| Description: The mapping of an element of the disjoint union to the value of the corresponding function is a function. (Contributed by AV, 26-Jun-2022.) |
| Ref | Expression |
|---|---|
| updjud.f |
|
| updjud.g |
|
| updjudhf.h |
|
| Ref | Expression |
|---|---|
| updjudhf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldju2ndl 7173 |
. . . . . 6
| |
| 2 | 1 | ex 115 |
. . . . 5
|
| 3 | updjud.f |
. . . . . 6
| |
| 4 | ffvelcdm 5712 |
. . . . . . 7
| |
| 5 | 4 | ex 115 |
. . . . . 6
|
| 6 | 3, 5 | syl 14 |
. . . . 5
|
| 7 | 2, 6 | sylan9r 410 |
. . . 4
|
| 8 | 7 | imp 124 |
. . 3
|
| 9 | df-ne 2376 |
. . . . 5
| |
| 10 | eldju2ndr 7174 |
. . . . . . 7
| |
| 11 | 10 | ex 115 |
. . . . . 6
|
| 12 | updjud.g |
. . . . . . 7
| |
| 13 | ffvelcdm 5712 |
. . . . . . . 8
| |
| 14 | 13 | ex 115 |
. . . . . . 7
|
| 15 | 12, 14 | syl 14 |
. . . . . 6
|
| 16 | 11, 15 | sylan9r 410 |
. . . . 5
|
| 17 | 9, 16 | biimtrrid 153 |
. . . 4
|
| 18 | 17 | imp 124 |
. . 3
|
| 19 | eldju1st 7172 |
. . . . . 6
| |
| 20 | 1n0 6517 |
. . . . . . . 8
| |
| 21 | neeq1 2388 |
. . . . . . . 8
| |
| 22 | 20, 21 | mpbiri 168 |
. . . . . . 7
|
| 23 | 22 | orim2i 762 |
. . . . . 6
|
| 24 | 19, 23 | syl 14 |
. . . . 5
|
| 25 | 24 | adantl 277 |
. . . 4
|
| 26 | dcne 2386 |
. . . 4
| |
| 27 | 25, 26 | sylibr 134 |
. . 3
|
| 28 | 8, 18, 27 | ifcldadc 3599 |
. 2
|
| 29 | updjudhf.h |
. 2
| |
| 30 | 28, 29 | fmptd 5733 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4339 df-iord 4412 df-on 4414 df-suc 4417 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-1st 6225 df-2nd 6226 df-1o 6501 df-dju 7139 df-inl 7148 df-inr 7149 |
| This theorem is referenced by: updjudhcoinlf 7181 updjudhcoinrg 7182 updjud 7183 |
| Copyright terms: Public domain | W3C validator |