ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovidi GIF version

Theorem ovidi 6038
Description: The value of an operation class abstraction (weak version). (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
ovidi.2 ((𝑥𝑅𝑦𝑆) → ∃*𝑧𝜑)
ovidi.3 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}
Assertion
Ref Expression
ovidi ((𝑥𝑅𝑦𝑆) → (𝜑 → (𝑥𝐹𝑦) = 𝑧))
Distinct variable groups:   𝑥,𝑦,𝑧   𝑧,𝑅   𝑧,𝑆
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝑅(𝑥,𝑦)   𝑆(𝑥,𝑦)   𝐹(𝑥,𝑦,𝑧)

Proof of Theorem ovidi
StepHypRef Expression
1 ovidi.2 . . . 4 ((𝑥𝑅𝑦𝑆) → ∃*𝑧𝜑)
2 moanimv 2117 . . . 4 (∃*𝑧((𝑥𝑅𝑦𝑆) ∧ 𝜑) ↔ ((𝑥𝑅𝑦𝑆) → ∃*𝑧𝜑))
31, 2mpbir 146 . . 3 ∃*𝑧((𝑥𝑅𝑦𝑆) ∧ 𝜑)
4 ovidi.3 . . 3 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝑅𝑦𝑆) ∧ 𝜑)}
53, 4ovidig 6037 . 2 (((𝑥𝑅𝑦𝑆) ∧ 𝜑) → (𝑥𝐹𝑦) = 𝑧)
65ex 115 1 ((𝑥𝑅𝑦𝑆) → (𝜑 → (𝑥𝐹𝑦) = 𝑧))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1364  ∃*wmo 2043  wcel 2164  (class class class)co 5919  {coprab 5920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239  ax-setind 4570
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2987  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-iota 5216  df-fun 5257  df-fv 5263  df-ov 5922  df-oprab 5923
This theorem is referenced by:  ovmpt4g  6042  ovi3  6057
  Copyright terms: Public domain W3C validator