Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > fzval | Unicode version |
Description: The value of a finite set of sequential integers. E.g., means the set . A special case of this definition (starting at 1) appears as Definition 11-2.1 of [Gleason] p. 141, where k means our ; he calls these sets segments of the integers. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.) |
Ref | Expression |
---|---|
fzval |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq1 3985 | . . . 4 | |
2 | 1 | anbi1d 461 | . . 3 |
3 | 2 | rabbidv 2715 | . 2 |
4 | breq2 3986 | . . . 4 | |
5 | 4 | anbi2d 460 | . . 3 |
6 | 5 | rabbidv 2715 | . 2 |
7 | df-fz 9945 | . 2 | |
8 | zex 9200 | . . 3 | |
9 | 8 | rabex 4126 | . 2 |
10 | 3, 6, 7, 9 | ovmpo 5977 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1343 wcel 2136 crab 2448 class class class wbr 3982 (class class class)co 5842 cle 7934 cz 9191 cfz 9944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-neg 8072 df-z 9192 df-fz 9945 |
This theorem is referenced by: fzval2 9947 elfz1 9949 fznlem 9976 |
Copyright terms: Public domain | W3C validator |