ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzval Unicode version

Theorem fzval 10134
Description: The value of a finite set of sequential integers. E.g.,  2 ... 5 means the set  { 2 ,  3 ,  4 ,  5 }. A special case of this definition (starting at 1) appears as Definition 11-2.1 of [Gleason] p. 141, where  NNk means our  1 ... k; he calls these sets segments of the integers. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
Assertion
Ref Expression
fzval  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M ... N
)  =  { k  e.  ZZ  |  ( M  <_  k  /\  k  <_  N ) } )
Distinct variable groups:    k, M    k, N

Proof of Theorem fzval
Dummy variables  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 4048 . . . 4  |-  ( m  =  M  ->  (
m  <_  k  <->  M  <_  k ) )
21anbi1d 465 . . 3  |-  ( m  =  M  ->  (
( m  <_  k  /\  k  <_  n )  <-> 
( M  <_  k  /\  k  <_  n ) ) )
32rabbidv 2761 . 2  |-  ( m  =  M  ->  { k  e.  ZZ  |  ( m  <_  k  /\  k  <_  n ) }  =  { k  e.  ZZ  |  ( M  <_  k  /\  k  <_  n ) } )
4 breq2 4049 . . . 4  |-  ( n  =  N  ->  (
k  <_  n  <->  k  <_  N ) )
54anbi2d 464 . . 3  |-  ( n  =  N  ->  (
( M  <_  k  /\  k  <_  n )  <-> 
( M  <_  k  /\  k  <_  N ) ) )
65rabbidv 2761 . 2  |-  ( n  =  N  ->  { k  e.  ZZ  |  ( M  <_  k  /\  k  <_  n ) }  =  { k  e.  ZZ  |  ( M  <_  k  /\  k  <_  N ) } )
7 df-fz 10133 . 2  |-  ...  =  ( m  e.  ZZ ,  n  e.  ZZ  |->  { k  e.  ZZ  |  ( m  <_ 
k  /\  k  <_  n ) } )
8 zex 9383 . . 3  |-  ZZ  e.  _V
98rabex 4189 . 2  |-  { k  e.  ZZ  |  ( M  <_  k  /\  k  <_  N ) }  e.  _V
103, 6, 7, 9ovmpo 6083 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M ... N
)  =  { k  e.  ZZ  |  ( M  <_  k  /\  k  <_  N ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   {crab 2488   class class class wbr 4045  (class class class)co 5946    <_ cle 8110   ZZcz 9374   ...cfz 10132
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-pow 4219  ax-pr 4254  ax-setind 4586  ax-cnex 8018  ax-resscn 8019
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-opab 4107  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-iota 5233  df-fun 5274  df-fv 5280  df-ov 5949  df-oprab 5950  df-mpo 5951  df-neg 8248  df-z 9375  df-fz 10133
This theorem is referenced by:  fzval2  10135  elfz1  10137  fznlem  10165
  Copyright terms: Public domain W3C validator