ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovmpog Unicode version

Theorem ovmpog 6011
Description: Value of an operation given by a maps-to rule. Special case. (Contributed by NM, 14-Sep-1999.) (Revised by David Abernethy, 19-Jun-2012.)
Hypotheses
Ref Expression
ovmpog.1  |-  ( x  =  A  ->  R  =  G )
ovmpog.2  |-  ( y  =  B  ->  G  =  S )
ovmpog.3  |-  F  =  ( x  e.  C ,  y  e.  D  |->  R )
Assertion
Ref Expression
ovmpog  |-  ( ( A  e.  C  /\  B  e.  D  /\  S  e.  H )  ->  ( A F B )  =  S )
Distinct variable groups:    x, y, A   
x, B, y    x, C, y    x, D, y   
x, S, y
Allowed substitution hints:    R( x, y)    F( x, y)    G( x, y)    H( x, y)

Proof of Theorem ovmpog
StepHypRef Expression
1 ovmpog.1 . . 3  |-  ( x  =  A  ->  R  =  G )
2 ovmpog.2 . . 3  |-  ( y  =  B  ->  G  =  S )
31, 2sylan9eq 2230 . 2  |-  ( ( x  =  A  /\  y  =  B )  ->  R  =  S )
4 ovmpog.3 . 2  |-  F  =  ( x  e.  C ,  y  e.  D  |->  R )
53, 4ovmpoga 6006 1  |-  ( ( A  e.  C  /\  B  e.  D  /\  S  e.  H )  ->  ( A F B )  =  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 978    = wceq 1353    e. wcel 2148  (class class class)co 5877    e. cmpo 5879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-setind 4538
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-iota 5180  df-fun 5220  df-fv 5226  df-ov 5880  df-oprab 5881  df-mpo 5882
This theorem is referenced by:  ovmpo  6012  oav  6457  omv  6458  oeiv  6459  mapvalg  6660  pmvalg  6661  mulpipq2  7372  genipv  7510  genpelxp  7512  subval  8151  divvalap  8633  cnref1o  9652  modqval  10326  frecuzrdgrrn  10410  frec2uzrdg  10411  frecuzrdgrcl  10412  frecuzrdgsuc  10416  frecuzrdgrclt  10417  frecuzrdgg  10418  frecuzrdgsuctlem  10425  seq3val  10460  seqvalcd  10461  seqf  10463  seq3p1  10464  seqovcd  10465  seqp1cd  10468  exp3val  10524  bcval  10731  shftfvalg  10829  shftfval  10832  cnrecnv  10921  gcdval  11962  sqpweven  12177  2sqpwodd  12178  ennnfonelemp1  12409  nninfdclemcl  12451  nninfdclemp1  12453  ressvalsets  12526  imasex  12731  releqgg  13085  cnprcl2k  13791  xmetxp  14092  cncfval  14144  rpcxpef  14400  rplogbval  14448
  Copyright terms: Public domain W3C validator