| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ovmpog | Unicode version | ||
| Description: Value of an operation given by a maps-to rule. Special case. (Contributed by NM, 14-Sep-1999.) (Revised by David Abernethy, 19-Jun-2012.) |
| Ref | Expression |
|---|---|
| ovmpog.1 |
|
| ovmpog.2 |
|
| ovmpog.3 |
|
| Ref | Expression |
|---|---|
| ovmpog |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovmpog.1 |
. . 3
| |
| 2 | ovmpog.2 |
. . 3
| |
| 3 | 1, 2 | sylan9eq 2260 |
. 2
|
| 4 | ovmpog.3 |
. 2
| |
| 5 | 3, 4 | ovmpoga 6098 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-setind 4603 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-iota 5251 df-fun 5292 df-fv 5298 df-ov 5970 df-oprab 5971 df-mpo 5972 |
| This theorem is referenced by: ovmpo 6104 oav 6563 omv 6564 oeiv 6565 mapvalg 6768 pmvalg 6769 mulpipq2 7519 genipv 7657 genpelxp 7659 subval 8299 divvalap 8782 cnref1o 9807 modqval 10506 frecuzrdgrrn 10590 frec2uzrdg 10591 frecuzrdgrcl 10592 frecuzrdgsuc 10596 frecuzrdgrclt 10597 frecuzrdgg 10598 frecuzrdgsuctlem 10605 seq3val 10642 seqvalcd 10643 seqf 10646 seq3p1 10647 seqovcd 10649 seqp1cd 10652 exp3val 10723 bcval 10931 ccatfvalfi 11086 shftfvalg 11244 shftfval 11247 cnrecnv 11336 gcdval 12395 sqpweven 12612 2sqpwodd 12613 ennnfonelemp1 12892 nninfdclemcl 12934 nninfdclemp1 12936 ressvalsets 13011 imasex 13252 qusex 13272 mhmex 13409 releqgg 13671 eqgex 13672 isghm 13694 gsumfzfsumlemm 14464 cnfldui 14466 expghmap 14484 cnprcl2k 14793 xmetxp 15094 expcn 15156 cncfval 15159 dvply2g 15353 rpcxpef 15481 rplogbval 15532 mpodvdsmulf1o 15577 fsumdvdsmul 15578 |
| Copyright terms: Public domain | W3C validator |