Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ovmpog | Unicode version |
Description: Value of an operation given by a maps-to rule. Special case. (Contributed by NM, 14-Sep-1999.) (Revised by David Abernethy, 19-Jun-2012.) |
Ref | Expression |
---|---|
ovmpog.1 | |
ovmpog.2 | |
ovmpog.3 |
Ref | Expression |
---|---|
ovmpog |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovmpog.1 | . . 3 | |
2 | ovmpog.2 | . . 3 | |
3 | 1, 2 | sylan9eq 2223 | . 2 |
4 | ovmpog.3 | . 2 | |
5 | 3, 4 | ovmpoga 5982 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 w3a 973 wceq 1348 wcel 2141 (class class class)co 5853 cmpo 5855 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-setind 4521 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-ov 5856 df-oprab 5857 df-mpo 5858 |
This theorem is referenced by: ovmpo 5988 oav 6433 omv 6434 oeiv 6435 mapvalg 6636 pmvalg 6637 mulpipq2 7333 genipv 7471 genpelxp 7473 subval 8111 divvalap 8591 cnref1o 9609 modqval 10280 frecuzrdgrrn 10364 frec2uzrdg 10365 frecuzrdgrcl 10366 frecuzrdgsuc 10370 frecuzrdgrclt 10371 frecuzrdgg 10372 frecuzrdgsuctlem 10379 seq3val 10414 seqvalcd 10415 seqf 10417 seq3p1 10418 seqovcd 10419 seqp1cd 10422 exp3val 10478 bcval 10683 shftfvalg 10782 shftfval 10785 cnrecnv 10874 gcdval 11914 sqpweven 12129 2sqpwodd 12130 ennnfonelemp1 12361 nninfdclemcl 12403 nninfdclemp1 12405 cnprcl2k 13000 xmetxp 13301 cncfval 13353 rpcxpef 13609 rplogbval 13657 |
Copyright terms: Public domain | W3C validator |