ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovmpog Unicode version

Theorem ovmpog 5972
Description: Value of an operation given by a maps-to rule. Special case. (Contributed by NM, 14-Sep-1999.) (Revised by David Abernethy, 19-Jun-2012.)
Hypotheses
Ref Expression
ovmpog.1  |-  ( x  =  A  ->  R  =  G )
ovmpog.2  |-  ( y  =  B  ->  G  =  S )
ovmpog.3  |-  F  =  ( x  e.  C ,  y  e.  D  |->  R )
Assertion
Ref Expression
ovmpog  |-  ( ( A  e.  C  /\  B  e.  D  /\  S  e.  H )  ->  ( A F B )  =  S )
Distinct variable groups:    x, y, A   
x, B, y    x, C, y    x, D, y   
x, S, y
Allowed substitution hints:    R( x, y)    F( x, y)    G( x, y)    H( x, y)

Proof of Theorem ovmpog
StepHypRef Expression
1 ovmpog.1 . . 3  |-  ( x  =  A  ->  R  =  G )
2 ovmpog.2 . . 3  |-  ( y  =  B  ->  G  =  S )
31, 2sylan9eq 2218 . 2  |-  ( ( x  =  A  /\  y  =  B )  ->  R  =  S )
4 ovmpog.3 . 2  |-  F  =  ( x  e.  C ,  y  e.  D  |->  R )
53, 4ovmpoga 5967 1  |-  ( ( A  e.  C  /\  B  e.  D  /\  S  e.  H )  ->  ( A F B )  =  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 968    = wceq 1343    e. wcel 2136  (class class class)co 5841    e. cmpo 5843
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4099  ax-pow 4152  ax-pr 4186  ax-setind 4513
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2296  df-ne 2336  df-ral 2448  df-rex 2449  df-v 2727  df-sbc 2951  df-dif 3117  df-un 3119  df-in 3121  df-ss 3128  df-pw 3560  df-sn 3581  df-pr 3582  df-op 3584  df-uni 3789  df-br 3982  df-opab 4043  df-id 4270  df-xp 4609  df-rel 4610  df-cnv 4611  df-co 4612  df-dm 4613  df-iota 5152  df-fun 5189  df-fv 5195  df-ov 5844  df-oprab 5845  df-mpo 5846
This theorem is referenced by:  ovmpo  5973  oav  6418  omv  6419  oeiv  6420  mapvalg  6620  pmvalg  6621  mulpipq2  7308  genipv  7446  genpelxp  7448  subval  8086  divvalap  8566  cnref1o  9584  modqval  10255  frecuzrdgrrn  10339  frec2uzrdg  10340  frecuzrdgrcl  10341  frecuzrdgsuc  10345  frecuzrdgrclt  10346  frecuzrdgg  10347  frecuzrdgsuctlem  10354  seq3val  10389  seqvalcd  10390  seqf  10392  seq3p1  10393  seqovcd  10394  seqp1cd  10397  exp3val  10453  bcval  10658  shftfvalg  10756  shftfval  10759  cnrecnv  10848  gcdval  11888  sqpweven  12103  2sqpwodd  12104  ennnfonelemp1  12335  nninfdclemcl  12377  nninfdclemp1  12379  cnprcl2k  12806  xmetxp  13107  cncfval  13159  rpcxpef  13415  rplogbval  13463
  Copyright terms: Public domain W3C validator