![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ovmpog | Unicode version |
Description: Value of an operation given by a maps-to rule. Special case. (Contributed by NM, 14-Sep-1999.) (Revised by David Abernethy, 19-Jun-2012.) |
Ref | Expression |
---|---|
ovmpog.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
ovmpog.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
ovmpog.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
ovmpog |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovmpog.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | ovmpog.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | sylan9eq 2246 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | ovmpog.3 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 3, 4 | ovmpoga 6049 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-setind 4570 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2987 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-iota 5216 df-fun 5257 df-fv 5263 df-ov 5922 df-oprab 5923 df-mpo 5924 |
This theorem is referenced by: ovmpo 6055 oav 6509 omv 6510 oeiv 6511 mapvalg 6714 pmvalg 6715 mulpipq2 7433 genipv 7571 genpelxp 7573 subval 8213 divvalap 8695 cnref1o 9719 modqval 10398 frecuzrdgrrn 10482 frec2uzrdg 10483 frecuzrdgrcl 10484 frecuzrdgsuc 10488 frecuzrdgrclt 10489 frecuzrdgg 10490 frecuzrdgsuctlem 10497 seq3val 10534 seqvalcd 10535 seqf 10538 seq3p1 10539 seqovcd 10541 seqp1cd 10544 exp3val 10615 bcval 10823 shftfvalg 10965 shftfval 10968 cnrecnv 11057 gcdval 12099 sqpweven 12316 2sqpwodd 12317 ennnfonelemp1 12566 nninfdclemcl 12608 nninfdclemp1 12610 ressvalsets 12685 imasex 12891 qusex 12911 mhmex 13037 releqgg 13293 eqgex 13294 isghm 13316 gsumfzfsumlemm 14086 cnfldui 14088 expghmap 14106 cnprcl2k 14385 xmetxp 14686 expcn 14748 cncfval 14751 rpcxpef 15070 rplogbval 15118 |
Copyright terms: Public domain | W3C validator |