| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ovmpog | Unicode version | ||
| Description: Value of an operation given by a maps-to rule. Special case. (Contributed by NM, 14-Sep-1999.) (Revised by David Abernethy, 19-Jun-2012.) |
| Ref | Expression |
|---|---|
| ovmpog.1 |
|
| ovmpog.2 |
|
| ovmpog.3 |
|
| Ref | Expression |
|---|---|
| ovmpog |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovmpog.1 |
. . 3
| |
| 2 | ovmpog.2 |
. . 3
| |
| 3 | 1, 2 | sylan9eq 2258 |
. 2
|
| 4 | ovmpog.3 |
. 2
| |
| 5 | 3, 4 | ovmpoga 6075 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-setind 4585 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-iota 5232 df-fun 5273 df-fv 5279 df-ov 5947 df-oprab 5948 df-mpo 5949 |
| This theorem is referenced by: ovmpo 6081 oav 6540 omv 6541 oeiv 6542 mapvalg 6745 pmvalg 6746 mulpipq2 7484 genipv 7622 genpelxp 7624 subval 8264 divvalap 8747 cnref1o 9772 modqval 10469 frecuzrdgrrn 10553 frec2uzrdg 10554 frecuzrdgrcl 10555 frecuzrdgsuc 10559 frecuzrdgrclt 10560 frecuzrdgg 10561 frecuzrdgsuctlem 10568 seq3val 10605 seqvalcd 10606 seqf 10609 seq3p1 10610 seqovcd 10612 seqp1cd 10615 exp3val 10686 bcval 10894 ccatfvalfi 11048 shftfvalg 11129 shftfval 11132 cnrecnv 11221 gcdval 12280 sqpweven 12497 2sqpwodd 12498 ennnfonelemp1 12777 nninfdclemcl 12819 nninfdclemp1 12821 ressvalsets 12896 imasex 13137 qusex 13157 mhmex 13294 releqgg 13556 eqgex 13557 isghm 13579 gsumfzfsumlemm 14349 cnfldui 14351 expghmap 14369 cnprcl2k 14678 xmetxp 14979 expcn 15041 cncfval 15044 dvply2g 15238 rpcxpef 15366 rplogbval 15417 mpodvdsmulf1o 15462 fsumdvdsmul 15463 |
| Copyright terms: Public domain | W3C validator |