| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ovmpog | Unicode version | ||
| Description: Value of an operation given by a maps-to rule. Special case. (Contributed by NM, 14-Sep-1999.) (Revised by David Abernethy, 19-Jun-2012.) |
| Ref | Expression |
|---|---|
| ovmpog.1 |
|
| ovmpog.2 |
|
| ovmpog.3 |
|
| Ref | Expression |
|---|---|
| ovmpog |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovmpog.1 |
. . 3
| |
| 2 | ovmpog.2 |
. . 3
| |
| 3 | 1, 2 | sylan9eq 2257 |
. 2
|
| 4 | ovmpog.3 |
. 2
| |
| 5 | 3, 4 | ovmpoga 6074 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-setind 4584 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-iota 5231 df-fun 5272 df-fv 5278 df-ov 5946 df-oprab 5947 df-mpo 5948 |
| This theorem is referenced by: ovmpo 6080 oav 6539 omv 6540 oeiv 6541 mapvalg 6744 pmvalg 6745 mulpipq2 7483 genipv 7621 genpelxp 7623 subval 8263 divvalap 8746 cnref1o 9771 modqval 10467 frecuzrdgrrn 10551 frec2uzrdg 10552 frecuzrdgrcl 10553 frecuzrdgsuc 10557 frecuzrdgrclt 10558 frecuzrdgg 10559 frecuzrdgsuctlem 10566 seq3val 10603 seqvalcd 10604 seqf 10607 seq3p1 10608 seqovcd 10610 seqp1cd 10613 exp3val 10684 bcval 10892 ccatfvalfi 11046 shftfvalg 11100 shftfval 11103 cnrecnv 11192 gcdval 12251 sqpweven 12468 2sqpwodd 12469 ennnfonelemp1 12748 nninfdclemcl 12790 nninfdclemp1 12792 ressvalsets 12867 imasex 13108 qusex 13128 mhmex 13265 releqgg 13527 eqgex 13528 isghm 13550 gsumfzfsumlemm 14320 cnfldui 14322 expghmap 14340 cnprcl2k 14649 xmetxp 14950 expcn 15012 cncfval 15015 dvply2g 15209 rpcxpef 15337 rplogbval 15388 mpodvdsmulf1o 15433 fsumdvdsmul 15434 |
| Copyright terms: Public domain | W3C validator |