Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ovmpog | Unicode version |
Description: Value of an operation given by a maps-to rule. Special case. (Contributed by NM, 14-Sep-1999.) (Revised by David Abernethy, 19-Jun-2012.) |
Ref | Expression |
---|---|
ovmpog.1 | |
ovmpog.2 | |
ovmpog.3 |
Ref | Expression |
---|---|
ovmpog |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovmpog.1 | . . 3 | |
2 | ovmpog.2 | . . 3 | |
3 | 1, 2 | sylan9eq 2218 | . 2 |
4 | ovmpog.3 | . 2 | |
5 | 3, 4 | ovmpoga 5967 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 w3a 968 wceq 1343 wcel 2136 (class class class)co 5841 cmpo 5843 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4099 ax-pow 4152 ax-pr 4186 ax-setind 4513 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ne 2336 df-ral 2448 df-rex 2449 df-v 2727 df-sbc 2951 df-dif 3117 df-un 3119 df-in 3121 df-ss 3128 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-br 3982 df-opab 4043 df-id 4270 df-xp 4609 df-rel 4610 df-cnv 4611 df-co 4612 df-dm 4613 df-iota 5152 df-fun 5189 df-fv 5195 df-ov 5844 df-oprab 5845 df-mpo 5846 |
This theorem is referenced by: ovmpo 5973 oav 6418 omv 6419 oeiv 6420 mapvalg 6620 pmvalg 6621 mulpipq2 7308 genipv 7446 genpelxp 7448 subval 8086 divvalap 8566 cnref1o 9584 modqval 10255 frecuzrdgrrn 10339 frec2uzrdg 10340 frecuzrdgrcl 10341 frecuzrdgsuc 10345 frecuzrdgrclt 10346 frecuzrdgg 10347 frecuzrdgsuctlem 10354 seq3val 10389 seqvalcd 10390 seqf 10392 seq3p1 10393 seqovcd 10394 seqp1cd 10397 exp3val 10453 bcval 10658 shftfvalg 10756 shftfval 10759 cnrecnv 10848 gcdval 11888 sqpweven 12103 2sqpwodd 12104 ennnfonelemp1 12335 nninfdclemcl 12377 nninfdclemp1 12379 cnprcl2k 12806 xmetxp 13107 cncfval 13159 rpcxpef 13415 rplogbval 13463 |
Copyright terms: Public domain | W3C validator |