| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ovmpog | Unicode version | ||
| Description: Value of an operation given by a maps-to rule. Special case. (Contributed by NM, 14-Sep-1999.) (Revised by David Abernethy, 19-Jun-2012.) |
| Ref | Expression |
|---|---|
| ovmpog.1 |
|
| ovmpog.2 |
|
| ovmpog.3 |
|
| Ref | Expression |
|---|---|
| ovmpog |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovmpog.1 |
. . 3
| |
| 2 | ovmpog.2 |
. . 3
| |
| 3 | 1, 2 | sylan9eq 2249 |
. 2
|
| 4 | ovmpog.3 |
. 2
| |
| 5 | 3, 4 | ovmpoga 6056 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-setind 4574 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-iota 5220 df-fun 5261 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 |
| This theorem is referenced by: ovmpo 6062 oav 6521 omv 6522 oeiv 6523 mapvalg 6726 pmvalg 6727 mulpipq2 7455 genipv 7593 genpelxp 7595 subval 8235 divvalap 8718 cnref1o 9742 modqval 10433 frecuzrdgrrn 10517 frec2uzrdg 10518 frecuzrdgrcl 10519 frecuzrdgsuc 10523 frecuzrdgrclt 10524 frecuzrdgg 10525 frecuzrdgsuctlem 10532 seq3val 10569 seqvalcd 10570 seqf 10573 seq3p1 10574 seqovcd 10576 seqp1cd 10579 exp3val 10650 bcval 10858 shftfvalg 11000 shftfval 11003 cnrecnv 11092 gcdval 12151 sqpweven 12368 2sqpwodd 12369 ennnfonelemp1 12648 nninfdclemcl 12690 nninfdclemp1 12692 ressvalsets 12767 imasex 13007 qusex 13027 mhmex 13164 releqgg 13426 eqgex 13427 isghm 13449 gsumfzfsumlemm 14219 cnfldui 14221 expghmap 14239 cnprcl2k 14526 xmetxp 14827 expcn 14889 cncfval 14892 dvply2g 15086 rpcxpef 15214 rplogbval 15265 mpodvdsmulf1o 15310 fsumdvdsmul 15311 |
| Copyright terms: Public domain | W3C validator |