| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ovmpog | Unicode version | ||
| Description: Value of an operation given by a maps-to rule. Special case. (Contributed by NM, 14-Sep-1999.) (Revised by David Abernethy, 19-Jun-2012.) |
| Ref | Expression |
|---|---|
| ovmpog.1 |
|
| ovmpog.2 |
|
| ovmpog.3 |
|
| Ref | Expression |
|---|---|
| ovmpog |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovmpog.1 |
. . 3
| |
| 2 | ovmpog.2 |
. . 3
| |
| 3 | 1, 2 | sylan9eq 2282 |
. 2
|
| 4 | ovmpog.3 |
. 2
| |
| 5 | 3, 4 | ovmpoga 6133 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-setind 4628 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-iota 5277 df-fun 5319 df-fv 5325 df-ov 6003 df-oprab 6004 df-mpo 6005 |
| This theorem is referenced by: ovmpo 6139 oav 6598 omv 6599 oeiv 6600 mapvalg 6803 pmvalg 6804 mulpipq2 7554 genipv 7692 genpelxp 7694 subval 8334 divvalap 8817 cnref1o 9842 modqval 10541 frecuzrdgrrn 10625 frec2uzrdg 10626 frecuzrdgrcl 10627 frecuzrdgsuc 10631 frecuzrdgrclt 10632 frecuzrdgg 10633 frecuzrdgsuctlem 10640 seq3val 10677 seqvalcd 10678 seqf 10681 seq3p1 10682 seqovcd 10684 seqp1cd 10687 exp3val 10758 bcval 10966 ccatfvalfi 11122 shftfvalg 11324 shftfval 11327 cnrecnv 11416 gcdval 12475 sqpweven 12692 2sqpwodd 12693 ennnfonelemp1 12972 nninfdclemcl 13014 nninfdclemp1 13016 ressvalsets 13092 imasex 13333 qusex 13353 mhmex 13490 releqgg 13752 eqgex 13753 isghm 13775 gsumfzfsumlemm 14545 cnfldui 14547 expghmap 14565 cnprcl2k 14874 xmetxp 15175 expcn 15237 cncfval 15240 dvply2g 15434 rpcxpef 15562 rplogbval 15613 mpodvdsmulf1o 15658 fsumdvdsmul 15659 |
| Copyright terms: Public domain | W3C validator |