ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovmpodx Unicode version

Theorem ovmpodx 6049
Description: Value of an operation given by a maps-to rule, deduction form. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
ovmpodx.1  |-  ( ph  ->  F  =  ( x  e.  C ,  y  e.  D  |->  R ) )
ovmpodx.2  |-  ( (
ph  /\  ( x  =  A  /\  y  =  B ) )  ->  R  =  S )
ovmpodx.3  |-  ( (
ph  /\  x  =  A )  ->  D  =  L )
ovmpodx.4  |-  ( ph  ->  A  e.  C )
ovmpodx.5  |-  ( ph  ->  B  e.  L )
ovmpodx.6  |-  ( ph  ->  S  e.  X )
Assertion
Ref Expression
ovmpodx  |-  ( ph  ->  ( A F B )  =  S )
Distinct variable groups:    x, y, A   
y, B    y, A    x, B    x, S, y    ph, x, y
Allowed substitution hints:    C( x, y)    D( x, y)    R( x, y)    F( x, y)    L( x, y)    X( x, y)

Proof of Theorem ovmpodx
StepHypRef Expression
1 ovmpodx.1 . 2  |-  ( ph  ->  F  =  ( x  e.  C ,  y  e.  D  |->  R ) )
2 ovmpodx.2 . 2  |-  ( (
ph  /\  ( x  =  A  /\  y  =  B ) )  ->  R  =  S )
3 ovmpodx.3 . 2  |-  ( (
ph  /\  x  =  A )  ->  D  =  L )
4 ovmpodx.4 . 2  |-  ( ph  ->  A  e.  C )
5 ovmpodx.5 . 2  |-  ( ph  ->  B  e.  L )
6 ovmpodx.6 . 2  |-  ( ph  ->  S  e.  X )
7 nfv 1542 . 2  |-  F/ x ph
8 nfv 1542 . 2  |-  F/ y
ph
9 nfcv 2339 . 2  |-  F/_ y A
10 nfcv 2339 . 2  |-  F/_ x B
11 nfcv 2339 . 2  |-  F/_ x S
12 nfcv 2339 . 2  |-  F/_ y S
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12ovmpodxf 6048 1  |-  ( ph  ->  ( A F B )  =  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167  (class class class)co 5922    e. cmpo 5924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-setind 4573
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-iota 5219  df-fun 5260  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927
This theorem is referenced by:  ovmpod  6050  ovmpox  6051  dvfvalap  14917
  Copyright terms: Public domain W3C validator