ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovmpodx Unicode version

Theorem ovmpodx 5968
Description: Value of an operation given by a maps-to rule, deduction form. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
ovmpodx.1  |-  ( ph  ->  F  =  ( x  e.  C ,  y  e.  D  |->  R ) )
ovmpodx.2  |-  ( (
ph  /\  ( x  =  A  /\  y  =  B ) )  ->  R  =  S )
ovmpodx.3  |-  ( (
ph  /\  x  =  A )  ->  D  =  L )
ovmpodx.4  |-  ( ph  ->  A  e.  C )
ovmpodx.5  |-  ( ph  ->  B  e.  L )
ovmpodx.6  |-  ( ph  ->  S  e.  X )
Assertion
Ref Expression
ovmpodx  |-  ( ph  ->  ( A F B )  =  S )
Distinct variable groups:    x, y, A   
y, B    y, A    x, B    x, S, y    ph, x, y
Allowed substitution hints:    C( x, y)    D( x, y)    R( x, y)    F( x, y)    L( x, y)    X( x, y)

Proof of Theorem ovmpodx
StepHypRef Expression
1 ovmpodx.1 . 2  |-  ( ph  ->  F  =  ( x  e.  C ,  y  e.  D  |->  R ) )
2 ovmpodx.2 . 2  |-  ( (
ph  /\  ( x  =  A  /\  y  =  B ) )  ->  R  =  S )
3 ovmpodx.3 . 2  |-  ( (
ph  /\  x  =  A )  ->  D  =  L )
4 ovmpodx.4 . 2  |-  ( ph  ->  A  e.  C )
5 ovmpodx.5 . 2  |-  ( ph  ->  B  e.  L )
6 ovmpodx.6 . 2  |-  ( ph  ->  S  e.  X )
7 nfv 1516 . 2  |-  F/ x ph
8 nfv 1516 . 2  |-  F/ y
ph
9 nfcv 2308 . 2  |-  F/_ y A
10 nfcv 2308 . 2  |-  F/_ x B
11 nfcv 2308 . 2  |-  F/_ x S
12 nfcv 2308 . 2  |-  F/_ y S
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12ovmpodxf 5967 1  |-  ( ph  ->  ( A F B )  =  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1343    e. wcel 2136  (class class class)co 5842    e. cmpo 5844
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-setind 4514
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-ov 5845  df-oprab 5846  df-mpo 5847
This theorem is referenced by:  ovmpod  5969  ovmpox  5970  dvfvalap  13290
  Copyright terms: Public domain W3C validator