ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovmpodx Unicode version

Theorem ovmpodx 6095
Description: Value of an operation given by a maps-to rule, deduction form. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
ovmpodx.1  |-  ( ph  ->  F  =  ( x  e.  C ,  y  e.  D  |->  R ) )
ovmpodx.2  |-  ( (
ph  /\  ( x  =  A  /\  y  =  B ) )  ->  R  =  S )
ovmpodx.3  |-  ( (
ph  /\  x  =  A )  ->  D  =  L )
ovmpodx.4  |-  ( ph  ->  A  e.  C )
ovmpodx.5  |-  ( ph  ->  B  e.  L )
ovmpodx.6  |-  ( ph  ->  S  e.  X )
Assertion
Ref Expression
ovmpodx  |-  ( ph  ->  ( A F B )  =  S )
Distinct variable groups:    x, y, A   
y, B    y, A    x, B    x, S, y    ph, x, y
Allowed substitution hints:    C( x, y)    D( x, y)    R( x, y)    F( x, y)    L( x, y)    X( x, y)

Proof of Theorem ovmpodx
StepHypRef Expression
1 ovmpodx.1 . 2  |-  ( ph  ->  F  =  ( x  e.  C ,  y  e.  D  |->  R ) )
2 ovmpodx.2 . 2  |-  ( (
ph  /\  ( x  =  A  /\  y  =  B ) )  ->  R  =  S )
3 ovmpodx.3 . 2  |-  ( (
ph  /\  x  =  A )  ->  D  =  L )
4 ovmpodx.4 . 2  |-  ( ph  ->  A  e.  C )
5 ovmpodx.5 . 2  |-  ( ph  ->  B  e.  L )
6 ovmpodx.6 . 2  |-  ( ph  ->  S  e.  X )
7 nfv 1552 . 2  |-  F/ x ph
8 nfv 1552 . 2  |-  F/ y
ph
9 nfcv 2350 . 2  |-  F/_ y A
10 nfcv 2350 . 2  |-  F/_ x B
11 nfcv 2350 . 2  |-  F/_ x S
12 nfcv 2350 . 2  |-  F/_ y S
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12ovmpodxf 6094 1  |-  ( ph  ->  ( A F B )  =  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178  (class class class)co 5967    e. cmpo 5969
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-setind 4603
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-iota 5251  df-fun 5292  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972
This theorem is referenced by:  ovmpod  6096  ovmpox  6097  dvfvalap  15268
  Copyright terms: Public domain W3C validator