![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ovmpodx | GIF version |
Description: Value of an operation given by a maps-to rule, deduction form. (Contributed by Mario Carneiro, 29-Dec-2014.) |
Ref | Expression |
---|---|
ovmpodx.1 | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)) |
ovmpodx.2 | ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → 𝑅 = 𝑆) |
ovmpodx.3 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐷 = 𝐿) |
ovmpodx.4 | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
ovmpodx.5 | ⊢ (𝜑 → 𝐵 ∈ 𝐿) |
ovmpodx.6 | ⊢ (𝜑 → 𝑆 ∈ 𝑋) |
Ref | Expression |
---|---|
ovmpodx | ⊢ (𝜑 → (𝐴𝐹𝐵) = 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovmpodx.1 | . 2 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)) | |
2 | ovmpodx.2 | . 2 ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → 𝑅 = 𝑆) | |
3 | ovmpodx.3 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐷 = 𝐿) | |
4 | ovmpodx.4 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐶) | |
5 | ovmpodx.5 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐿) | |
6 | ovmpodx.6 | . 2 ⊢ (𝜑 → 𝑆 ∈ 𝑋) | |
7 | nfv 1539 | . 2 ⊢ Ⅎ𝑥𝜑 | |
8 | nfv 1539 | . 2 ⊢ Ⅎ𝑦𝜑 | |
9 | nfcv 2336 | . 2 ⊢ Ⅎ𝑦𝐴 | |
10 | nfcv 2336 | . 2 ⊢ Ⅎ𝑥𝐵 | |
11 | nfcv 2336 | . 2 ⊢ Ⅎ𝑥𝑆 | |
12 | nfcv 2336 | . 2 ⊢ Ⅎ𝑦𝑆 | |
13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | ovmpodxf 6045 | 1 ⊢ (𝜑 → (𝐴𝐹𝐵) = 𝑆) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1364 ∈ wcel 2164 (class class class)co 5919 ∈ cmpo 5921 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-setind 4570 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2987 df-dif 3156 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-iota 5216 df-fun 5257 df-fv 5263 df-ov 5922 df-oprab 5923 df-mpo 5924 |
This theorem is referenced by: ovmpod 6047 ovmpox 6048 dvfvalap 14860 |
Copyright terms: Public domain | W3C validator |