ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ovmpodx GIF version

Theorem ovmpodx 6085
Description: Value of an operation given by a maps-to rule, deduction form. (Contributed by Mario Carneiro, 29-Dec-2014.)
Hypotheses
Ref Expression
ovmpodx.1 (𝜑𝐹 = (𝑥𝐶, 𝑦𝐷𝑅))
ovmpodx.2 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑅 = 𝑆)
ovmpodx.3 ((𝜑𝑥 = 𝐴) → 𝐷 = 𝐿)
ovmpodx.4 (𝜑𝐴𝐶)
ovmpodx.5 (𝜑𝐵𝐿)
ovmpodx.6 (𝜑𝑆𝑋)
Assertion
Ref Expression
ovmpodx (𝜑 → (𝐴𝐹𝐵) = 𝑆)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵   𝑦,𝐴   𝑥,𝐵   𝑥,𝑆,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐶(𝑥,𝑦)   𝐷(𝑥,𝑦)   𝑅(𝑥,𝑦)   𝐹(𝑥,𝑦)   𝐿(𝑥,𝑦)   𝑋(𝑥,𝑦)

Proof of Theorem ovmpodx
StepHypRef Expression
1 ovmpodx.1 . 2 (𝜑𝐹 = (𝑥𝐶, 𝑦𝐷𝑅))
2 ovmpodx.2 . 2 ((𝜑 ∧ (𝑥 = 𝐴𝑦 = 𝐵)) → 𝑅 = 𝑆)
3 ovmpodx.3 . 2 ((𝜑𝑥 = 𝐴) → 𝐷 = 𝐿)
4 ovmpodx.4 . 2 (𝜑𝐴𝐶)
5 ovmpodx.5 . 2 (𝜑𝐵𝐿)
6 ovmpodx.6 . 2 (𝜑𝑆𝑋)
7 nfv 1552 . 2 𝑥𝜑
8 nfv 1552 . 2 𝑦𝜑
9 nfcv 2349 . 2 𝑦𝐴
10 nfcv 2349 . 2 𝑥𝐵
11 nfcv 2349 . 2 𝑥𝑆
12 nfcv 2349 . 2 𝑦𝑆
131, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12ovmpodxf 6084 1 (𝜑 → (𝐴𝐹𝐵) = 𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1373  wcel 2177  (class class class)co 5957  cmpo 5959
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-setind 4593
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-iota 5241  df-fun 5282  df-fv 5288  df-ov 5960  df-oprab 5961  df-mpo 5962
This theorem is referenced by:  ovmpod  6086  ovmpox  6087  dvfvalap  15228
  Copyright terms: Public domain W3C validator