| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ovmpodx | GIF version | ||
| Description: Value of an operation given by a maps-to rule, deduction form. (Contributed by Mario Carneiro, 29-Dec-2014.) |
| Ref | Expression |
|---|---|
| ovmpodx.1 | ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)) |
| ovmpodx.2 | ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → 𝑅 = 𝑆) |
| ovmpodx.3 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐷 = 𝐿) |
| ovmpodx.4 | ⊢ (𝜑 → 𝐴 ∈ 𝐶) |
| ovmpodx.5 | ⊢ (𝜑 → 𝐵 ∈ 𝐿) |
| ovmpodx.6 | ⊢ (𝜑 → 𝑆 ∈ 𝑋) |
| Ref | Expression |
|---|---|
| ovmpodx | ⊢ (𝜑 → (𝐴𝐹𝐵) = 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovmpodx.1 | . 2 ⊢ (𝜑 → 𝐹 = (𝑥 ∈ 𝐶, 𝑦 ∈ 𝐷 ↦ 𝑅)) | |
| 2 | ovmpodx.2 | . 2 ⊢ ((𝜑 ∧ (𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) → 𝑅 = 𝑆) | |
| 3 | ovmpodx.3 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝐷 = 𝐿) | |
| 4 | ovmpodx.4 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝐶) | |
| 5 | ovmpodx.5 | . 2 ⊢ (𝜑 → 𝐵 ∈ 𝐿) | |
| 6 | ovmpodx.6 | . 2 ⊢ (𝜑 → 𝑆 ∈ 𝑋) | |
| 7 | nfv 1550 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 8 | nfv 1550 | . 2 ⊢ Ⅎ𝑦𝜑 | |
| 9 | nfcv 2347 | . 2 ⊢ Ⅎ𝑦𝐴 | |
| 10 | nfcv 2347 | . 2 ⊢ Ⅎ𝑥𝐵 | |
| 11 | nfcv 2347 | . 2 ⊢ Ⅎ𝑥𝑆 | |
| 12 | nfcv 2347 | . 2 ⊢ Ⅎ𝑦𝑆 | |
| 13 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 | ovmpodxf 6061 | 1 ⊢ (𝜑 → (𝐴𝐹𝐵) = 𝑆) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 = wceq 1372 ∈ wcel 2175 (class class class)co 5934 ∈ cmpo 5936 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-setind 4583 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-id 4338 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-iota 5229 df-fun 5270 df-fv 5276 df-ov 5937 df-oprab 5938 df-mpo 5939 |
| This theorem is referenced by: ovmpod 6063 ovmpox 6064 dvfvalap 15071 |
| Copyright terms: Public domain | W3C validator |