ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  submcl Unicode version

Theorem submcl 12875
Description: Submonoids are closed under the monoid operation. (Contributed by Mario Carneiro, 10-Mar-2015.)
Hypothesis
Ref Expression
submcl.p  |-  .+  =  ( +g  `  M )
Assertion
Ref Expression
submcl  |-  ( ( S  e.  (SubMnd `  M )  /\  X  e.  S  /\  Y  e.  S )  ->  ( X  .+  Y )  e.  S )

Proof of Theorem submcl
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 submrcl 12867 . . . . . . 7  |-  ( S  e.  (SubMnd `  M
)  ->  M  e.  Mnd )
2 eqid 2177 . . . . . . . 8  |-  ( Base `  M )  =  (
Base `  M )
3 eqid 2177 . . . . . . . 8  |-  ( 0g
`  M )  =  ( 0g `  M
)
4 submcl.p . . . . . . . 8  |-  .+  =  ( +g  `  M )
52, 3, 4issubm 12868 . . . . . . 7  |-  ( M  e.  Mnd  ->  ( S  e.  (SubMnd `  M
)  <->  ( S  C_  ( Base `  M )  /\  ( 0g `  M
)  e.  S  /\  A. x  e.  S  A. y  e.  S  (
x  .+  y )  e.  S ) ) )
61, 5syl 14 . . . . . 6  |-  ( S  e.  (SubMnd `  M
)  ->  ( S  e.  (SubMnd `  M )  <->  ( S  C_  ( Base `  M )  /\  ( 0g `  M )  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x  .+  y )  e.  S
) ) )
76ibi 176 . . . . 5  |-  ( S  e.  (SubMnd `  M
)  ->  ( S  C_  ( Base `  M
)  /\  ( 0g `  M )  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x  .+  y )  e.  S ) )
87simp3d 1011 . . . 4  |-  ( S  e.  (SubMnd `  M
)  ->  A. x  e.  S  A. y  e.  S  ( x  .+  y )  e.  S
)
9 ovrspc2v 5903 . . . 4  |-  ( ( ( X  e.  S  /\  Y  e.  S
)  /\  A. x  e.  S  A. y  e.  S  ( x  .+  y )  e.  S
)  ->  ( X  .+  Y )  e.  S
)
108, 9sylan2 286 . . 3  |-  ( ( ( X  e.  S  /\  Y  e.  S
)  /\  S  e.  (SubMnd `  M ) )  ->  ( X  .+  Y )  e.  S
)
1110ancoms 268 . 2  |-  ( ( S  e.  (SubMnd `  M )  /\  ( X  e.  S  /\  Y  e.  S )
)  ->  ( X  .+  Y )  e.  S
)
12113impb 1199 1  |-  ( ( S  e.  (SubMnd `  M )  /\  X  e.  S  /\  Y  e.  S )  ->  ( X  .+  Y )  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2148   A.wral 2455    C_ wss 3131   ` cfv 5218  (class class class)co 5877   Basecbs 12464   +g cplusg 12538   0gc0g 12710   Mndcmnd 12822  SubMndcsubmnd 12855
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-cnex 7904  ax-resscn 7905  ax-1re 7907  ax-addrcl 7910
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-fv 5226  df-ov 5880  df-inn 8922  df-ndx 12467  df-slot 12468  df-base 12470  df-submnd 12857
This theorem is referenced by:  mhmima  12880  submmulgcl  13031
  Copyright terms: Public domain W3C validator