ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  submcl Unicode version

Theorem submcl 13051
Description: Submonoids are closed under the monoid operation. (Contributed by Mario Carneiro, 10-Mar-2015.)
Hypothesis
Ref Expression
submcl.p  |-  .+  =  ( +g  `  M )
Assertion
Ref Expression
submcl  |-  ( ( S  e.  (SubMnd `  M )  /\  X  e.  S  /\  Y  e.  S )  ->  ( X  .+  Y )  e.  S )

Proof of Theorem submcl
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 submrcl 13043 . . . . . . 7  |-  ( S  e.  (SubMnd `  M
)  ->  M  e.  Mnd )
2 eqid 2193 . . . . . . . 8  |-  ( Base `  M )  =  (
Base `  M )
3 eqid 2193 . . . . . . . 8  |-  ( 0g
`  M )  =  ( 0g `  M
)
4 submcl.p . . . . . . . 8  |-  .+  =  ( +g  `  M )
52, 3, 4issubm 13044 . . . . . . 7  |-  ( M  e.  Mnd  ->  ( S  e.  (SubMnd `  M
)  <->  ( S  C_  ( Base `  M )  /\  ( 0g `  M
)  e.  S  /\  A. x  e.  S  A. y  e.  S  (
x  .+  y )  e.  S ) ) )
61, 5syl 14 . . . . . 6  |-  ( S  e.  (SubMnd `  M
)  ->  ( S  e.  (SubMnd `  M )  <->  ( S  C_  ( Base `  M )  /\  ( 0g `  M )  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x  .+  y )  e.  S
) ) )
76ibi 176 . . . . 5  |-  ( S  e.  (SubMnd `  M
)  ->  ( S  C_  ( Base `  M
)  /\  ( 0g `  M )  e.  S  /\  A. x  e.  S  A. y  e.  S  ( x  .+  y )  e.  S ) )
87simp3d 1013 . . . 4  |-  ( S  e.  (SubMnd `  M
)  ->  A. x  e.  S  A. y  e.  S  ( x  .+  y )  e.  S
)
9 ovrspc2v 5944 . . . 4  |-  ( ( ( X  e.  S  /\  Y  e.  S
)  /\  A. x  e.  S  A. y  e.  S  ( x  .+  y )  e.  S
)  ->  ( X  .+  Y )  e.  S
)
108, 9sylan2 286 . . 3  |-  ( ( ( X  e.  S  /\  Y  e.  S
)  /\  S  e.  (SubMnd `  M ) )  ->  ( X  .+  Y )  e.  S
)
1110ancoms 268 . 2  |-  ( ( S  e.  (SubMnd `  M )  /\  ( X  e.  S  /\  Y  e.  S )
)  ->  ( X  .+  Y )  e.  S
)
12113impb 1201 1  |-  ( ( S  e.  (SubMnd `  M )  /\  X  e.  S  /\  Y  e.  S )  ->  ( X  .+  Y )  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2164   A.wral 2472    C_ wss 3153   ` cfv 5254  (class class class)co 5918   Basecbs 12618   +g cplusg 12695   0gc0g 12867   Mndcmnd 12997  SubMndcsubmnd 13030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-fv 5262  df-ov 5921  df-inn 8983  df-ndx 12621  df-slot 12622  df-base 12624  df-submnd 13032
This theorem is referenced by:  resmhm  13059  mhmima  13063  gsumwsubmcl  13068  submmulgcl  13235  gsumfzsubmcl  13408
  Copyright terms: Public domain W3C validator