| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > peano2b | GIF version | ||
| Description: A class belongs to omega iff its successor does. (Contributed by NM, 3-Dec-1995.) |
| Ref | Expression |
|---|---|
| peano2b | ⊢ (𝐴 ∈ ω ↔ suc 𝐴 ∈ ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano2 4651 | . 2 ⊢ (𝐴 ∈ ω → suc 𝐴 ∈ ω) | |
| 2 | elex 2785 | . . . . 5 ⊢ (suc 𝐴 ∈ ω → suc 𝐴 ∈ V) | |
| 3 | sucexb 4553 | . . . . 5 ⊢ (𝐴 ∈ V ↔ suc 𝐴 ∈ V) | |
| 4 | 2, 3 | sylibr 134 | . . . 4 ⊢ (suc 𝐴 ∈ ω → 𝐴 ∈ V) |
| 5 | sucidg 4471 | . . . 4 ⊢ (𝐴 ∈ V → 𝐴 ∈ suc 𝐴) | |
| 6 | 4, 5 | syl 14 | . . 3 ⊢ (suc 𝐴 ∈ ω → 𝐴 ∈ suc 𝐴) |
| 7 | elnn 4662 | . . 3 ⊢ ((𝐴 ∈ suc 𝐴 ∧ suc 𝐴 ∈ ω) → 𝐴 ∈ ω) | |
| 8 | 6, 7 | mpancom 422 | . 2 ⊢ (suc 𝐴 ∈ ω → 𝐴 ∈ ω) |
| 9 | 1, 8 | impbii 126 | 1 ⊢ (𝐴 ∈ ω ↔ suc 𝐴 ∈ ω) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∈ wcel 2177 Vcvv 2773 suc csuc 4420 ωcom 4646 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-iinf 4644 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-uni 3857 df-int 3892 df-suc 4426 df-iom 4647 |
| This theorem is referenced by: nnpredcl 4679 nnmsucr 6587 |
| Copyright terms: Public domain | W3C validator |