| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > peano2b | GIF version | ||
| Description: A class belongs to omega iff its successor does. (Contributed by NM, 3-Dec-1995.) |
| Ref | Expression |
|---|---|
| peano2b | ⊢ (𝐴 ∈ ω ↔ suc 𝐴 ∈ ω) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | peano2 4641 | . 2 ⊢ (𝐴 ∈ ω → suc 𝐴 ∈ ω) | |
| 2 | elex 2782 | . . . . 5 ⊢ (suc 𝐴 ∈ ω → suc 𝐴 ∈ V) | |
| 3 | sucexb 4543 | . . . . 5 ⊢ (𝐴 ∈ V ↔ suc 𝐴 ∈ V) | |
| 4 | 2, 3 | sylibr 134 | . . . 4 ⊢ (suc 𝐴 ∈ ω → 𝐴 ∈ V) |
| 5 | sucidg 4461 | . . . 4 ⊢ (𝐴 ∈ V → 𝐴 ∈ suc 𝐴) | |
| 6 | 4, 5 | syl 14 | . . 3 ⊢ (suc 𝐴 ∈ ω → 𝐴 ∈ suc 𝐴) |
| 7 | elnn 4652 | . . 3 ⊢ ((𝐴 ∈ suc 𝐴 ∧ suc 𝐴 ∈ ω) → 𝐴 ∈ ω) | |
| 8 | 6, 7 | mpancom 422 | . 2 ⊢ (suc 𝐴 ∈ ω → 𝐴 ∈ ω) |
| 9 | 1, 8 | impbii 126 | 1 ⊢ (𝐴 ∈ ω ↔ suc 𝐴 ∈ ω) |
| Colors of variables: wff set class |
| Syntax hints: ↔ wb 105 ∈ wcel 2175 Vcvv 2771 suc csuc 4410 ωcom 4636 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-iinf 4634 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-uni 3850 df-int 3885 df-suc 4416 df-iom 4637 |
| This theorem is referenced by: nnpredcl 4669 nnmsucr 6564 |
| Copyright terms: Public domain | W3C validator |