Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > peano2b | GIF version |
Description: A class belongs to omega iff its successor does. (Contributed by NM, 3-Dec-1995.) |
Ref | Expression |
---|---|
peano2b | ⊢ (𝐴 ∈ ω ↔ suc 𝐴 ∈ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano2 4572 | . 2 ⊢ (𝐴 ∈ ω → suc 𝐴 ∈ ω) | |
2 | elex 2737 | . . . . 5 ⊢ (suc 𝐴 ∈ ω → suc 𝐴 ∈ V) | |
3 | sucexb 4474 | . . . . 5 ⊢ (𝐴 ∈ V ↔ suc 𝐴 ∈ V) | |
4 | 2, 3 | sylibr 133 | . . . 4 ⊢ (suc 𝐴 ∈ ω → 𝐴 ∈ V) |
5 | sucidg 4394 | . . . 4 ⊢ (𝐴 ∈ V → 𝐴 ∈ suc 𝐴) | |
6 | 4, 5 | syl 14 | . . 3 ⊢ (suc 𝐴 ∈ ω → 𝐴 ∈ suc 𝐴) |
7 | elnn 4583 | . . 3 ⊢ ((𝐴 ∈ suc 𝐴 ∧ suc 𝐴 ∈ ω) → 𝐴 ∈ ω) | |
8 | 6, 7 | mpancom 419 | . 2 ⊢ (suc 𝐴 ∈ ω → 𝐴 ∈ ω) |
9 | 1, 8 | impbii 125 | 1 ⊢ (𝐴 ∈ ω ↔ suc 𝐴 ∈ ω) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∈ wcel 2136 Vcvv 2726 suc csuc 4343 ωcom 4567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-uni 3790 df-int 3825 df-suc 4349 df-iom 4568 |
This theorem is referenced by: nnpredcl 4600 nnmsucr 6456 |
Copyright terms: Public domain | W3C validator |