ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  peano2b GIF version

Theorem peano2b 4616
Description: A class belongs to omega iff its successor does. (Contributed by NM, 3-Dec-1995.)
Assertion
Ref Expression
peano2b (𝐴 ∈ ω ↔ suc 𝐴 ∈ ω)

Proof of Theorem peano2b
StepHypRef Expression
1 peano2 4596 . 2 (𝐴 ∈ ω → suc 𝐴 ∈ ω)
2 elex 2750 . . . . 5 (suc 𝐴 ∈ ω → suc 𝐴 ∈ V)
3 sucexb 4498 . . . . 5 (𝐴 ∈ V ↔ suc 𝐴 ∈ V)
42, 3sylibr 134 . . . 4 (suc 𝐴 ∈ ω → 𝐴 ∈ V)
5 sucidg 4418 . . . 4 (𝐴 ∈ V → 𝐴 ∈ suc 𝐴)
64, 5syl 14 . . 3 (suc 𝐴 ∈ ω → 𝐴 ∈ suc 𝐴)
7 elnn 4607 . . 3 ((𝐴 ∈ suc 𝐴 ∧ suc 𝐴 ∈ ω) → 𝐴 ∈ ω)
86, 7mpancom 422 . 2 (suc 𝐴 ∈ ω → 𝐴 ∈ ω)
91, 8impbii 126 1 (𝐴 ∈ ω ↔ suc 𝐴 ∈ ω)
Colors of variables: wff set class
Syntax hints:  wb 105  wcel 2148  Vcvv 2739  suc csuc 4367  ωcom 4591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-uni 3812  df-int 3847  df-suc 4373  df-iom 4592
This theorem is referenced by:  nnpredcl  4624  nnmsucr  6492
  Copyright terms: Public domain W3C validator