Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > peano2b | GIF version |
Description: A class belongs to omega iff its successor does. (Contributed by NM, 3-Dec-1995.) |
Ref | Expression |
---|---|
peano2b | ⊢ (𝐴 ∈ ω ↔ suc 𝐴 ∈ ω) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | peano2 4579 | . 2 ⊢ (𝐴 ∈ ω → suc 𝐴 ∈ ω) | |
2 | elex 2741 | . . . . 5 ⊢ (suc 𝐴 ∈ ω → suc 𝐴 ∈ V) | |
3 | sucexb 4481 | . . . . 5 ⊢ (𝐴 ∈ V ↔ suc 𝐴 ∈ V) | |
4 | 2, 3 | sylibr 133 | . . . 4 ⊢ (suc 𝐴 ∈ ω → 𝐴 ∈ V) |
5 | sucidg 4401 | . . . 4 ⊢ (𝐴 ∈ V → 𝐴 ∈ suc 𝐴) | |
6 | 4, 5 | syl 14 | . . 3 ⊢ (suc 𝐴 ∈ ω → 𝐴 ∈ suc 𝐴) |
7 | elnn 4590 | . . 3 ⊢ ((𝐴 ∈ suc 𝐴 ∧ suc 𝐴 ∈ ω) → 𝐴 ∈ ω) | |
8 | 6, 7 | mpancom 420 | . 2 ⊢ (suc 𝐴 ∈ ω → 𝐴 ∈ ω) |
9 | 1, 8 | impbii 125 | 1 ⊢ (𝐴 ∈ ω ↔ suc 𝐴 ∈ ω) |
Colors of variables: wff set class |
Syntax hints: ↔ wb 104 ∈ wcel 2141 Vcvv 2730 suc csuc 4350 ωcom 4574 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-uni 3797 df-int 3832 df-suc 4356 df-iom 4575 |
This theorem is referenced by: nnpredcl 4607 nnmsucr 6467 |
Copyright terms: Public domain | W3C validator |