| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2prm | Unicode version | ||
| Description: 2 is a prime number. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by Fan Zheng, 16-Jun-2016.) |
| Ref | Expression |
|---|---|
| 2prm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2z 9382 |
. . 3
| |
| 2 | 1lt2 9188 |
. . 3
| |
| 3 | eluz2b1 9704 |
. . 3
| |
| 4 | 1, 2, 3 | mpbir2an 944 |
. 2
|
| 5 | ral0 3561 |
. . 3
| |
| 6 | fzssuz 10169 |
. . . . . 6
| |
| 7 | df-ss 3178 |
. . . . . 6
| |
| 8 | 6, 7 | mpbi 145 |
. . . . 5
|
| 9 | uzdisj 10197 |
. . . . 5
| |
| 10 | 8, 9 | eqtr3i 2227 |
. . . 4
|
| 11 | 10 | raleqi 2705 |
. . 3
|
| 12 | 5, 11 | mpbir 146 |
. 2
|
| 13 | isprm3 12359 |
. 2
| |
| 14 | 4, 12, 13 | mpbir2an 944 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-iinf 4634 ax-cnex 7998 ax-resscn 7999 ax-1cn 8000 ax-1re 8001 ax-icn 8002 ax-addcl 8003 ax-addrcl 8004 ax-mulcl 8005 ax-mulrcl 8006 ax-addcom 8007 ax-mulcom 8008 ax-addass 8009 ax-mulass 8010 ax-distr 8011 ax-i2m1 8012 ax-0lt1 8013 ax-1rid 8014 ax-0id 8015 ax-rnegex 8016 ax-precex 8017 ax-cnre 8018 ax-pre-ltirr 8019 ax-pre-ltwlin 8020 ax-pre-lttrn 8021 ax-pre-apti 8022 ax-pre-ltadd 8023 ax-pre-mulgt0 8024 ax-pre-mulext 8025 ax-arch 8026 ax-caucvg 8027 |
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4338 df-po 4341 df-iso 4342 df-iord 4411 df-on 4413 df-ilim 4414 df-suc 4416 df-iom 4637 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 df-iota 5229 df-fun 5270 df-fn 5271 df-f 5272 df-f1 5273 df-fo 5274 df-f1o 5275 df-fv 5276 df-riota 5889 df-ov 5937 df-oprab 5938 df-mpo 5939 df-1st 6216 df-2nd 6217 df-recs 6381 df-frec 6467 df-1o 6492 df-2o 6493 df-er 6610 df-en 6818 df-pnf 8091 df-mnf 8092 df-xr 8093 df-ltxr 8094 df-le 8095 df-sub 8227 df-neg 8228 df-reap 8630 df-ap 8637 df-div 8728 df-inn 9019 df-2 9077 df-3 9078 df-4 9079 df-n0 9278 df-z 9355 df-uz 9631 df-q 9723 df-rp 9758 df-fz 10113 df-seqfrec 10574 df-exp 10665 df-cj 11072 df-re 11073 df-im 11074 df-rsqrt 11228 df-abs 11229 df-dvds 12018 df-prm 12349 |
| This theorem is referenced by: isoddgcd1 12400 3lcm2e6 12401 sqpweven 12416 2sqpwodd 12417 pythagtriplem4 12510 pc2dvds 12572 oddprmdvds 12596 2logb9irr 15361 2logb3irr 15363 2logb9irrap 15367 1sgm2ppw 15385 perfectlem1 15389 perfectlem2 15390 perfect 15391 lgs2 15412 lgsdir2 15428 lgseisenlem2 15466 lgsquad2lem1 15476 lgsquad2lem2 15477 lgsquad3 15479 m1lgs 15480 2lgs 15499 2lgsoddprm 15508 |
| Copyright terms: Public domain | W3C validator |