| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2prm | Unicode version | ||
| Description: 2 is a prime number. (Contributed by Paul Chapman, 22-Jun-2011.) (Proof shortened by Fan Zheng, 16-Jun-2016.) |
| Ref | Expression |
|---|---|
| 2prm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2z 9420 |
. . 3
| |
| 2 | 1lt2 9226 |
. . 3
| |
| 3 | eluz2b1 9742 |
. . 3
| |
| 4 | 1, 2, 3 | mpbir2an 945 |
. 2
|
| 5 | ral0 3566 |
. . 3
| |
| 6 | fzssuz 10207 |
. . . . . 6
| |
| 7 | df-ss 3183 |
. . . . . 6
| |
| 8 | 6, 7 | mpbi 145 |
. . . . 5
|
| 9 | uzdisj 10235 |
. . . . 5
| |
| 10 | 8, 9 | eqtr3i 2229 |
. . . 4
|
| 11 | 10 | raleqi 2707 |
. . 3
|
| 12 | 5, 11 | mpbir 146 |
. 2
|
| 13 | isprm3 12515 |
. 2
| |
| 14 | 4, 12, 13 | mpbir2an 945 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4167 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-iinf 4644 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-mulrcl 8044 ax-addcom 8045 ax-mulcom 8046 ax-addass 8047 ax-mulass 8048 ax-distr 8049 ax-i2m1 8050 ax-0lt1 8051 ax-1rid 8052 ax-0id 8053 ax-rnegex 8054 ax-precex 8055 ax-cnre 8056 ax-pre-ltirr 8057 ax-pre-ltwlin 8058 ax-pre-lttrn 8059 ax-pre-apti 8060 ax-pre-ltadd 8061 ax-pre-mulgt0 8062 ax-pre-mulext 8063 ax-arch 8064 ax-caucvg 8065 |
| This theorem depends on definitions: df-bi 117 df-stab 833 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-if 3576 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-iun 3935 df-br 4052 df-opab 4114 df-mpt 4115 df-tr 4151 df-id 4348 df-po 4351 df-iso 4352 df-iord 4421 df-on 4423 df-ilim 4424 df-suc 4426 df-iom 4647 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-ima 4696 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-f1 5285 df-fo 5286 df-f1o 5287 df-fv 5288 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-1st 6239 df-2nd 6240 df-recs 6404 df-frec 6490 df-1o 6515 df-2o 6516 df-er 6633 df-en 6841 df-pnf 8129 df-mnf 8130 df-xr 8131 df-ltxr 8132 df-le 8133 df-sub 8265 df-neg 8266 df-reap 8668 df-ap 8675 df-div 8766 df-inn 9057 df-2 9115 df-3 9116 df-4 9117 df-n0 9316 df-z 9393 df-uz 9669 df-q 9761 df-rp 9796 df-fz 10151 df-seqfrec 10615 df-exp 10706 df-cj 11228 df-re 11229 df-im 11230 df-rsqrt 11384 df-abs 11385 df-dvds 12174 df-prm 12505 |
| This theorem is referenced by: isoddgcd1 12556 3lcm2e6 12557 sqpweven 12572 2sqpwodd 12573 pythagtriplem4 12666 pc2dvds 12728 oddprmdvds 12752 2logb9irr 15518 2logb3irr 15520 2logb9irrap 15524 1sgm2ppw 15542 perfectlem1 15546 perfectlem2 15547 perfect 15548 lgs2 15569 lgsdir2 15585 lgseisenlem2 15623 lgsquad2lem1 15633 lgsquad2lem2 15634 lgsquad3 15636 m1lgs 15637 2lgs 15656 2lgsoddprm 15665 |
| Copyright terms: Public domain | W3C validator |