| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > reldmm | Unicode version | ||
| Description: A relation is inhabited iff its domain is inhabited. (Contributed by Jim Kingdon, 30-Jan-2026.) |
| Ref | Expression |
|---|---|
| reldmm |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq1w 2290 |
. . 3
| |
| 2 | 1 | cbvexv 1965 |
. 2
|
| 3 | elrel 4820 |
. . . . . . . 8
| |
| 4 | eleq1 2292 |
. . . . . . . . . . . 12
| |
| 5 | 4 | biimpd 144 |
. . . . . . . . . . 11
|
| 6 | 5 | eximi 1646 |
. . . . . . . . . 10
|
| 7 | nfv 1574 |
. . . . . . . . . . 11
| |
| 8 | 7 | 19.37-1 1720 |
. . . . . . . . . 10
|
| 9 | 6, 8 | syl 14 |
. . . . . . . . 9
|
| 10 | 9 | eximi 1646 |
. . . . . . . 8
|
| 11 | nfv 1574 |
. . . . . . . . 9
| |
| 12 | 11 | 19.37-1 1720 |
. . . . . . . 8
|
| 13 | 3, 10, 12 | 3syl 17 |
. . . . . . 7
|
| 14 | 13 | syldbl2 1326 |
. . . . . 6
|
| 15 | vex 2802 |
. . . . . . . 8
| |
| 16 | 15 | eldm2 4920 |
. . . . . . 7
|
| 17 | 16 | exbii 1651 |
. . . . . 6
|
| 18 | 14, 17 | sylibr 134 |
. . . . 5
|
| 19 | 18 | ex 115 |
. . . 4
|
| 20 | 19 | exlimdv 1865 |
. . 3
|
| 21 | elex2 2816 |
. . . . 5
| |
| 22 | 21 | exlimivv 1943 |
. . . 4
|
| 23 | 17, 22 | sylbi 121 |
. . 3
|
| 24 | 20, 23 | impbid1 142 |
. 2
|
| 25 | 2, 24 | bitr3id 194 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-v 2801 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-br 4083 df-opab 4145 df-xp 4724 df-rel 4725 df-dm 4728 |
| This theorem is referenced by: wlkm 16038 |
| Copyright terms: Public domain | W3C validator |