Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > resflem | Unicode version |
Description: A lemma to bound the range of a restriction. The conclusion would also hold with in place of (provided does not occur in ). If that stronger result is needed, it is however simpler to use the instance of resflem 5649 where is substituted for (in both the conclusion and the third hypothesis). (Contributed by BJ, 4-Jul-2022.) |
Ref | Expression |
---|---|
resflem.1 | |
resflem.2 | |
resflem.3 |
Ref | Expression |
---|---|
resflem |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resflem.2 | . . . . . 6 | |
2 | 1 | sseld 3141 | . . . . 5 |
3 | resflem.1 | . . . . . . 7 | |
4 | fdm 5343 | . . . . . . 7 | |
5 | 3, 4 | syl 14 | . . . . . 6 |
6 | 5 | eleq2d 2236 | . . . . 5 |
7 | 2, 6 | sylibrd 168 | . . . 4 |
8 | resflem.3 | . . . . 5 | |
9 | 8 | ex 114 | . . . 4 |
10 | 7, 9 | jcad 305 | . . 3 |
11 | 10 | ralrimiv 2538 | . 2 |
12 | ffun 5340 | . . . 4 | |
13 | 3, 12 | syl 14 | . . 3 |
14 | ffvresb 5648 | . . 3 | |
15 | 13, 14 | syl 14 | . 2 |
16 | 11, 15 | mpbird 166 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wcel 2136 wral 2444 wss 3116 cdm 4604 cres 4606 wfun 5182 wf 5184 cfv 5188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 |
This theorem is referenced by: bj-charfun 13689 |
Copyright terms: Public domain | W3C validator |