ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resflem Unicode version

Theorem resflem 5649
Description: A lemma to bound the range of a restriction. The conclusion would also hold with  ( X  i^i  Y ) in place of  Y (provided  x does not occur in  X). If that stronger result is needed, it is however simpler to use the instance of resflem 5649 where  ( X  i^i  Y ) is substituted for  Y (in both the conclusion and the third hypothesis). (Contributed by BJ, 4-Jul-2022.)
Hypotheses
Ref Expression
resflem.1  |-  ( ph  ->  F : V --> X )
resflem.2  |-  ( ph  ->  A  C_  V )
resflem.3  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  x )  e.  Y )
Assertion
Ref Expression
resflem  |-  ( ph  ->  ( F  |`  A ) : A --> Y )
Distinct variable groups:    x, A    ph, x    x, F    x, Y
Allowed substitution hints:    V( x)    X( x)

Proof of Theorem resflem
StepHypRef Expression
1 resflem.2 . . . . . 6  |-  ( ph  ->  A  C_  V )
21sseld 3141 . . . . 5  |-  ( ph  ->  ( x  e.  A  ->  x  e.  V ) )
3 resflem.1 . . . . . . 7  |-  ( ph  ->  F : V --> X )
4 fdm 5343 . . . . . . 7  |-  ( F : V --> X  ->  dom  F  =  V )
53, 4syl 14 . . . . . 6  |-  ( ph  ->  dom  F  =  V )
65eleq2d 2236 . . . . 5  |-  ( ph  ->  ( x  e.  dom  F  <-> 
x  e.  V ) )
72, 6sylibrd 168 . . . 4  |-  ( ph  ->  ( x  e.  A  ->  x  e.  dom  F
) )
8 resflem.3 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  x )  e.  Y )
98ex 114 . . . 4  |-  ( ph  ->  ( x  e.  A  ->  ( F `  x
)  e.  Y ) )
107, 9jcad 305 . . 3  |-  ( ph  ->  ( x  e.  A  ->  ( x  e.  dom  F  /\  ( F `  x )  e.  Y
) ) )
1110ralrimiv 2538 . 2  |-  ( ph  ->  A. x  e.  A  ( x  e.  dom  F  /\  ( F `  x )  e.  Y
) )
12 ffun 5340 . . . 4  |-  ( F : V --> X  ->  Fun  F )
133, 12syl 14 . . 3  |-  ( ph  ->  Fun  F )
14 ffvresb 5648 . . 3  |-  ( Fun 
F  ->  ( ( F  |`  A ) : A --> Y  <->  A. x  e.  A  ( x  e.  dom  F  /\  ( F `  x )  e.  Y ) ) )
1513, 14syl 14 . 2  |-  ( ph  ->  ( ( F  |`  A ) : A --> Y 
<-> 
A. x  e.  A  ( x  e.  dom  F  /\  ( F `  x )  e.  Y
) ) )
1611, 15mpbird 166 1  |-  ( ph  ->  ( F  |`  A ) : A --> Y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343    e. wcel 2136   A.wral 2444    C_ wss 3116   dom cdm 4604    |` cres 4606   Fun wfun 5182   -->wf 5184   ` cfv 5188
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-fv 5196
This theorem is referenced by:  bj-charfun  13689
  Copyright terms: Public domain W3C validator