ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resflem Unicode version

Theorem resflem 5577
Description: A lemma to bound the range of a restriction. The conclusion would also hold with  ( X  i^i  Y ) in place of  Y (provided  x does not occur in  X). If that stronger result is needed, it is however simpler to use the instance of resflem 5577 where  ( X  i^i  Y ) is substituted for  Y (in both the conclusion and the third hypothesis). (Contributed by BJ, 4-Jul-2022.)
Hypotheses
Ref Expression
resflem.1  |-  ( ph  ->  F : V --> X )
resflem.2  |-  ( ph  ->  A  C_  V )
resflem.3  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  x )  e.  Y )
Assertion
Ref Expression
resflem  |-  ( ph  ->  ( F  |`  A ) : A --> Y )
Distinct variable groups:    x, A    ph, x    x, F    x, Y
Allowed substitution hints:    V( x)    X( x)

Proof of Theorem resflem
StepHypRef Expression
1 resflem.2 . . . . . 6  |-  ( ph  ->  A  C_  V )
21sseld 3091 . . . . 5  |-  ( ph  ->  ( x  e.  A  ->  x  e.  V ) )
3 resflem.1 . . . . . . 7  |-  ( ph  ->  F : V --> X )
4 fdm 5273 . . . . . . 7  |-  ( F : V --> X  ->  dom  F  =  V )
53, 4syl 14 . . . . . 6  |-  ( ph  ->  dom  F  =  V )
65eleq2d 2207 . . . . 5  |-  ( ph  ->  ( x  e.  dom  F  <-> 
x  e.  V ) )
72, 6sylibrd 168 . . . 4  |-  ( ph  ->  ( x  e.  A  ->  x  e.  dom  F
) )
8 resflem.3 . . . . 5  |-  ( (
ph  /\  x  e.  A )  ->  ( F `  x )  e.  Y )
98ex 114 . . . 4  |-  ( ph  ->  ( x  e.  A  ->  ( F `  x
)  e.  Y ) )
107, 9jcad 305 . . 3  |-  ( ph  ->  ( x  e.  A  ->  ( x  e.  dom  F  /\  ( F `  x )  e.  Y
) ) )
1110ralrimiv 2502 . 2  |-  ( ph  ->  A. x  e.  A  ( x  e.  dom  F  /\  ( F `  x )  e.  Y
) )
12 ffun 5270 . . . 4  |-  ( F : V --> X  ->  Fun  F )
133, 12syl 14 . . 3  |-  ( ph  ->  Fun  F )
14 ffvresb 5576 . . 3  |-  ( Fun 
F  ->  ( ( F  |`  A ) : A --> Y  <->  A. x  e.  A  ( x  e.  dom  F  /\  ( F `  x )  e.  Y ) ) )
1513, 14syl 14 . 2  |-  ( ph  ->  ( ( F  |`  A ) : A --> Y 
<-> 
A. x  e.  A  ( x  e.  dom  F  /\  ( F `  x )  e.  Y
) ) )
1611, 15mpbird 166 1  |-  ( ph  ->  ( F  |`  A ) : A --> Y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480   A.wral 2414    C_ wss 3066   dom cdm 4534    |` cres 4536   Fun wfun 5112   -->wf 5114   ` cfv 5118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-v 2683  df-sbc 2905  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-fv 5126
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator