Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > resflem | GIF version |
Description: A lemma to bound the range of a restriction. The conclusion would also hold with (𝑋 ∩ 𝑌) in place of 𝑌 (provided 𝑥 does not occur in 𝑋). If that stronger result is needed, it is however simpler to use the instance of resflem 5649 where (𝑋 ∩ 𝑌) is substituted for 𝑌 (in both the conclusion and the third hypothesis). (Contributed by BJ, 4-Jul-2022.) |
Ref | Expression |
---|---|
resflem.1 | ⊢ (𝜑 → 𝐹:𝑉⟶𝑋) |
resflem.2 | ⊢ (𝜑 → 𝐴 ⊆ 𝑉) |
resflem.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝑌) |
Ref | Expression |
---|---|
resflem | ⊢ (𝜑 → (𝐹 ↾ 𝐴):𝐴⟶𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resflem.2 | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ 𝑉) | |
2 | 1 | sseld 3141 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝑉)) |
3 | resflem.1 | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝑉⟶𝑋) | |
4 | fdm 5343 | . . . . . . 7 ⊢ (𝐹:𝑉⟶𝑋 → dom 𝐹 = 𝑉) | |
5 | 3, 4 | syl 14 | . . . . . 6 ⊢ (𝜑 → dom 𝐹 = 𝑉) |
6 | 5 | eleq2d 2236 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ dom 𝐹 ↔ 𝑥 ∈ 𝑉)) |
7 | 2, 6 | sylibrd 168 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝑥 ∈ dom 𝐹)) |
8 | resflem.3 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝑌) | |
9 | 8 | ex 114 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝐹‘𝑥) ∈ 𝑌)) |
10 | 7, 9 | jcad 305 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ 𝑌))) |
11 | 10 | ralrimiv 2538 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ 𝑌)) |
12 | ffun 5340 | . . . 4 ⊢ (𝐹:𝑉⟶𝑋 → Fun 𝐹) | |
13 | 3, 12 | syl 14 | . . 3 ⊢ (𝜑 → Fun 𝐹) |
14 | ffvresb 5648 | . . 3 ⊢ (Fun 𝐹 → ((𝐹 ↾ 𝐴):𝐴⟶𝑌 ↔ ∀𝑥 ∈ 𝐴 (𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ 𝑌))) | |
15 | 13, 14 | syl 14 | . 2 ⊢ (𝜑 → ((𝐹 ↾ 𝐴):𝐴⟶𝑌 ↔ ∀𝑥 ∈ 𝐴 (𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ 𝑌))) |
16 | 11, 15 | mpbird 166 | 1 ⊢ (𝜑 → (𝐹 ↾ 𝐴):𝐴⟶𝑌) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1343 ∈ wcel 2136 ∀wral 2444 ⊆ wss 3116 dom cdm 4604 ↾ cres 4606 Fun wfun 5182 ⟶wf 5184 ‘cfv 5188 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-fv 5196 |
This theorem is referenced by: bj-charfun 13689 |
Copyright terms: Public domain | W3C validator |