ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resflem GIF version

Theorem resflem 5726
Description: A lemma to bound the range of a restriction. The conclusion would also hold with (𝑋𝑌) in place of 𝑌 (provided 𝑥 does not occur in 𝑋). If that stronger result is needed, it is however simpler to use the instance of resflem 5726 where (𝑋𝑌) is substituted for 𝑌 (in both the conclusion and the third hypothesis). (Contributed by BJ, 4-Jul-2022.)
Hypotheses
Ref Expression
resflem.1 (𝜑𝐹:𝑉𝑋)
resflem.2 (𝜑𝐴𝑉)
resflem.3 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ 𝑌)
Assertion
Ref Expression
resflem (𝜑 → (𝐹𝐴):𝐴𝑌)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥   𝑥,𝐹   𝑥,𝑌
Allowed substitution hints:   𝑉(𝑥)   𝑋(𝑥)

Proof of Theorem resflem
StepHypRef Expression
1 resflem.2 . . . . . 6 (𝜑𝐴𝑉)
21sseld 3182 . . . . 5 (𝜑 → (𝑥𝐴𝑥𝑉))
3 resflem.1 . . . . . . 7 (𝜑𝐹:𝑉𝑋)
4 fdm 5413 . . . . . . 7 (𝐹:𝑉𝑋 → dom 𝐹 = 𝑉)
53, 4syl 14 . . . . . 6 (𝜑 → dom 𝐹 = 𝑉)
65eleq2d 2266 . . . . 5 (𝜑 → (𝑥 ∈ dom 𝐹𝑥𝑉))
72, 6sylibrd 169 . . . 4 (𝜑 → (𝑥𝐴𝑥 ∈ dom 𝐹))
8 resflem.3 . . . . 5 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ 𝑌)
98ex 115 . . . 4 (𝜑 → (𝑥𝐴 → (𝐹𝑥) ∈ 𝑌))
107, 9jcad 307 . . 3 (𝜑 → (𝑥𝐴 → (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝑌)))
1110ralrimiv 2569 . 2 (𝜑 → ∀𝑥𝐴 (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝑌))
12 ffun 5410 . . . 4 (𝐹:𝑉𝑋 → Fun 𝐹)
133, 12syl 14 . . 3 (𝜑 → Fun 𝐹)
14 ffvresb 5725 . . 3 (Fun 𝐹 → ((𝐹𝐴):𝐴𝑌 ↔ ∀𝑥𝐴 (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝑌)))
1513, 14syl 14 . 2 (𝜑 → ((𝐹𝐴):𝐴𝑌 ↔ ∀𝑥𝐴 (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝑌)))
1611, 15mpbird 167 1 (𝜑 → (𝐹𝐴):𝐴𝑌)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167  wral 2475  wss 3157  dom cdm 4663  cres 4665  Fun wfun 5252  wf 5254  cfv 5258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-fv 5266
This theorem is referenced by:  bj-charfun  15453
  Copyright terms: Public domain W3C validator