![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > resflem | GIF version |
Description: A lemma to bound the range of a restriction. The conclusion would also hold with (𝑋 ∩ 𝑌) in place of 𝑌 (provided 𝑥 does not occur in 𝑋). If that stronger result is needed, it is however simpler to use the instance of resflem 5456 where (𝑋 ∩ 𝑌) is substituted for 𝑌 (in both the conclusion and the third hypothesis). (Contributed by BJ, 4-Jul-2022.) |
Ref | Expression |
---|---|
resflem.1 | ⊢ (𝜑 → 𝐹:𝑉⟶𝑋) |
resflem.2 | ⊢ (𝜑 → 𝐴 ⊆ 𝑉) |
resflem.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝑌) |
Ref | Expression |
---|---|
resflem | ⊢ (𝜑 → (𝐹 ↾ 𝐴):𝐴⟶𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | resflem.2 | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ 𝑉) | |
2 | 1 | sseld 3024 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝑉)) |
3 | resflem.1 | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝑉⟶𝑋) | |
4 | fdm 5160 | . . . . . . 7 ⊢ (𝐹:𝑉⟶𝑋 → dom 𝐹 = 𝑉) | |
5 | 3, 4 | syl 14 | . . . . . 6 ⊢ (𝜑 → dom 𝐹 = 𝑉) |
6 | 5 | eleq2d 2157 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ dom 𝐹 ↔ 𝑥 ∈ 𝑉)) |
7 | 2, 6 | sylibrd 167 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝑥 ∈ dom 𝐹)) |
8 | resflem.3 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝑌) | |
9 | 8 | ex 113 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝐹‘𝑥) ∈ 𝑌)) |
10 | 7, 9 | jcad 301 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ 𝑌))) |
11 | 10 | ralrimiv 2445 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ 𝑌)) |
12 | ffun 5158 | . . . 4 ⊢ (𝐹:𝑉⟶𝑋 → Fun 𝐹) | |
13 | 3, 12 | syl 14 | . . 3 ⊢ (𝜑 → Fun 𝐹) |
14 | ffvresb 5455 | . . 3 ⊢ (Fun 𝐹 → ((𝐹 ↾ 𝐴):𝐴⟶𝑌 ↔ ∀𝑥 ∈ 𝐴 (𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ 𝑌))) | |
15 | 13, 14 | syl 14 | . 2 ⊢ (𝜑 → ((𝐹 ↾ 𝐴):𝐴⟶𝑌 ↔ ∀𝑥 ∈ 𝐴 (𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ 𝑌))) |
16 | 11, 15 | mpbird 165 | 1 ⊢ (𝜑 → (𝐹 ↾ 𝐴):𝐴⟶𝑌) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 ↔ wb 103 = wceq 1289 ∈ wcel 1438 ∀wral 2359 ⊆ wss 2999 dom cdm 4436 ↾ cres 4438 Fun wfun 5004 ⟶wf 5006 ‘cfv 5010 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-14 1450 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 ax-ext 2070 ax-sep 3955 ax-pow 4007 ax-pr 4034 |
This theorem depends on definitions: df-bi 115 df-3an 926 df-tru 1292 df-nf 1395 df-sb 1693 df-eu 1951 df-mo 1952 df-clab 2075 df-cleq 2081 df-clel 2084 df-nfc 2217 df-ral 2364 df-rex 2365 df-v 2621 df-sbc 2841 df-un 3003 df-in 3005 df-ss 3012 df-pw 3429 df-sn 3450 df-pr 3451 df-op 3453 df-uni 3652 df-br 3844 df-opab 3898 df-mpt 3899 df-id 4118 df-xp 4442 df-rel 4443 df-cnv 4444 df-co 4445 df-dm 4446 df-rn 4447 df-res 4448 df-iota 4975 df-fun 5012 df-fn 5013 df-f 5014 df-fv 5018 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |