ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resflem GIF version

Theorem resflem 5683
Description: A lemma to bound the range of a restriction. The conclusion would also hold with (𝑋𝑌) in place of 𝑌 (provided 𝑥 does not occur in 𝑋). If that stronger result is needed, it is however simpler to use the instance of resflem 5683 where (𝑋𝑌) is substituted for 𝑌 (in both the conclusion and the third hypothesis). (Contributed by BJ, 4-Jul-2022.)
Hypotheses
Ref Expression
resflem.1 (𝜑𝐹:𝑉𝑋)
resflem.2 (𝜑𝐴𝑉)
resflem.3 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ 𝑌)
Assertion
Ref Expression
resflem (𝜑 → (𝐹𝐴):𝐴𝑌)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥   𝑥,𝐹   𝑥,𝑌
Allowed substitution hints:   𝑉(𝑥)   𝑋(𝑥)

Proof of Theorem resflem
StepHypRef Expression
1 resflem.2 . . . . . 6 (𝜑𝐴𝑉)
21sseld 3156 . . . . 5 (𝜑 → (𝑥𝐴𝑥𝑉))
3 resflem.1 . . . . . . 7 (𝜑𝐹:𝑉𝑋)
4 fdm 5373 . . . . . . 7 (𝐹:𝑉𝑋 → dom 𝐹 = 𝑉)
53, 4syl 14 . . . . . 6 (𝜑 → dom 𝐹 = 𝑉)
65eleq2d 2247 . . . . 5 (𝜑 → (𝑥 ∈ dom 𝐹𝑥𝑉))
72, 6sylibrd 169 . . . 4 (𝜑 → (𝑥𝐴𝑥 ∈ dom 𝐹))
8 resflem.3 . . . . 5 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ 𝑌)
98ex 115 . . . 4 (𝜑 → (𝑥𝐴 → (𝐹𝑥) ∈ 𝑌))
107, 9jcad 307 . . 3 (𝜑 → (𝑥𝐴 → (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝑌)))
1110ralrimiv 2549 . 2 (𝜑 → ∀𝑥𝐴 (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝑌))
12 ffun 5370 . . . 4 (𝐹:𝑉𝑋 → Fun 𝐹)
133, 12syl 14 . . 3 (𝜑 → Fun 𝐹)
14 ffvresb 5682 . . 3 (Fun 𝐹 → ((𝐹𝐴):𝐴𝑌 ↔ ∀𝑥𝐴 (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝑌)))
1513, 14syl 14 . 2 (𝜑 → ((𝐹𝐴):𝐴𝑌 ↔ ∀𝑥𝐴 (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝑌)))
1611, 15mpbird 167 1 (𝜑 → (𝐹𝐴):𝐴𝑌)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1353  wcel 2148  wral 2455  wss 3131  dom cdm 4628  cres 4630  Fun wfun 5212  wf 5214  cfv 5218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-14 2151  ax-ext 2159  ax-sep 4123  ax-pow 4176  ax-pr 4211
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2741  df-sbc 2965  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-fv 5226
This theorem is referenced by:  bj-charfun  14699
  Copyright terms: Public domain W3C validator