ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resflem GIF version

Theorem resflem 5757
Description: A lemma to bound the range of a restriction. The conclusion would also hold with (𝑋𝑌) in place of 𝑌 (provided 𝑥 does not occur in 𝑋). If that stronger result is needed, it is however simpler to use the instance of resflem 5757 where (𝑋𝑌) is substituted for 𝑌 (in both the conclusion and the third hypothesis). (Contributed by BJ, 4-Jul-2022.)
Hypotheses
Ref Expression
resflem.1 (𝜑𝐹:𝑉𝑋)
resflem.2 (𝜑𝐴𝑉)
resflem.3 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ 𝑌)
Assertion
Ref Expression
resflem (𝜑 → (𝐹𝐴):𝐴𝑌)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥   𝑥,𝐹   𝑥,𝑌
Allowed substitution hints:   𝑉(𝑥)   𝑋(𝑥)

Proof of Theorem resflem
StepHypRef Expression
1 resflem.2 . . . . . 6 (𝜑𝐴𝑉)
21sseld 3196 . . . . 5 (𝜑 → (𝑥𝐴𝑥𝑉))
3 resflem.1 . . . . . . 7 (𝜑𝐹:𝑉𝑋)
4 fdm 5441 . . . . . . 7 (𝐹:𝑉𝑋 → dom 𝐹 = 𝑉)
53, 4syl 14 . . . . . 6 (𝜑 → dom 𝐹 = 𝑉)
65eleq2d 2276 . . . . 5 (𝜑 → (𝑥 ∈ dom 𝐹𝑥𝑉))
72, 6sylibrd 169 . . . 4 (𝜑 → (𝑥𝐴𝑥 ∈ dom 𝐹))
8 resflem.3 . . . . 5 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ 𝑌)
98ex 115 . . . 4 (𝜑 → (𝑥𝐴 → (𝐹𝑥) ∈ 𝑌))
107, 9jcad 307 . . 3 (𝜑 → (𝑥𝐴 → (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝑌)))
1110ralrimiv 2579 . 2 (𝜑 → ∀𝑥𝐴 (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝑌))
12 ffun 5438 . . . 4 (𝐹:𝑉𝑋 → Fun 𝐹)
133, 12syl 14 . . 3 (𝜑 → Fun 𝐹)
14 ffvresb 5756 . . 3 (Fun 𝐹 → ((𝐹𝐴):𝐴𝑌 ↔ ∀𝑥𝐴 (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝑌)))
1513, 14syl 14 . 2 (𝜑 → ((𝐹𝐴):𝐴𝑌 ↔ ∀𝑥𝐴 (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝑌)))
1611, 15mpbird 167 1 (𝜑 → (𝐹𝐴):𝐴𝑌)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2177  wral 2485  wss 3170  dom cdm 4683  cres 4685  Fun wfun 5274  wf 5276  cfv 5280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3003  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-mpt 4115  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-rn 4694  df-res 4695  df-iota 5241  df-fun 5282  df-fn 5283  df-f 5284  df-fv 5288
This theorem is referenced by:  bj-charfun  15881
  Copyright terms: Public domain W3C validator