| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > resflem | GIF version | ||
| Description: A lemma to bound the range of a restriction. The conclusion would also hold with (𝑋 ∩ 𝑌) in place of 𝑌 (provided 𝑥 does not occur in 𝑋). If that stronger result is needed, it is however simpler to use the instance of resflem 5726 where (𝑋 ∩ 𝑌) is substituted for 𝑌 (in both the conclusion and the third hypothesis). (Contributed by BJ, 4-Jul-2022.) |
| Ref | Expression |
|---|---|
| resflem.1 | ⊢ (𝜑 → 𝐹:𝑉⟶𝑋) |
| resflem.2 | ⊢ (𝜑 → 𝐴 ⊆ 𝑉) |
| resflem.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝑌) |
| Ref | Expression |
|---|---|
| resflem | ⊢ (𝜑 → (𝐹 ↾ 𝐴):𝐴⟶𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resflem.2 | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ 𝑉) | |
| 2 | 1 | sseld 3182 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝑉)) |
| 3 | resflem.1 | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝑉⟶𝑋) | |
| 4 | fdm 5413 | . . . . . . 7 ⊢ (𝐹:𝑉⟶𝑋 → dom 𝐹 = 𝑉) | |
| 5 | 3, 4 | syl 14 | . . . . . 6 ⊢ (𝜑 → dom 𝐹 = 𝑉) |
| 6 | 5 | eleq2d 2266 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ dom 𝐹 ↔ 𝑥 ∈ 𝑉)) |
| 7 | 2, 6 | sylibrd 169 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝑥 ∈ dom 𝐹)) |
| 8 | resflem.3 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝑌) | |
| 9 | 8 | ex 115 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝐹‘𝑥) ∈ 𝑌)) |
| 10 | 7, 9 | jcad 307 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ 𝑌))) |
| 11 | 10 | ralrimiv 2569 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ 𝑌)) |
| 12 | ffun 5410 | . . . 4 ⊢ (𝐹:𝑉⟶𝑋 → Fun 𝐹) | |
| 13 | 3, 12 | syl 14 | . . 3 ⊢ (𝜑 → Fun 𝐹) |
| 14 | ffvresb 5725 | . . 3 ⊢ (Fun 𝐹 → ((𝐹 ↾ 𝐴):𝐴⟶𝑌 ↔ ∀𝑥 ∈ 𝐴 (𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ 𝑌))) | |
| 15 | 13, 14 | syl 14 | . 2 ⊢ (𝜑 → ((𝐹 ↾ 𝐴):𝐴⟶𝑌 ↔ ∀𝑥 ∈ 𝐴 (𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ 𝑌))) |
| 16 | 11, 15 | mpbird 167 | 1 ⊢ (𝜑 → (𝐹 ↾ 𝐴):𝐴⟶𝑌) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 ∀wral 2475 ⊆ wss 3157 dom cdm 4663 ↾ cres 4665 Fun wfun 5252 ⟶wf 5254 ‘cfv 5258 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 |
| This theorem is referenced by: bj-charfun 15453 |
| Copyright terms: Public domain | W3C validator |