ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  resflem GIF version

Theorem resflem 5723
Description: A lemma to bound the range of a restriction. The conclusion would also hold with (𝑋𝑌) in place of 𝑌 (provided 𝑥 does not occur in 𝑋). If that stronger result is needed, it is however simpler to use the instance of resflem 5723 where (𝑋𝑌) is substituted for 𝑌 (in both the conclusion and the third hypothesis). (Contributed by BJ, 4-Jul-2022.)
Hypotheses
Ref Expression
resflem.1 (𝜑𝐹:𝑉𝑋)
resflem.2 (𝜑𝐴𝑉)
resflem.3 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ 𝑌)
Assertion
Ref Expression
resflem (𝜑 → (𝐹𝐴):𝐴𝑌)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥   𝑥,𝐹   𝑥,𝑌
Allowed substitution hints:   𝑉(𝑥)   𝑋(𝑥)

Proof of Theorem resflem
StepHypRef Expression
1 resflem.2 . . . . . 6 (𝜑𝐴𝑉)
21sseld 3179 . . . . 5 (𝜑 → (𝑥𝐴𝑥𝑉))
3 resflem.1 . . . . . . 7 (𝜑𝐹:𝑉𝑋)
4 fdm 5410 . . . . . . 7 (𝐹:𝑉𝑋 → dom 𝐹 = 𝑉)
53, 4syl 14 . . . . . 6 (𝜑 → dom 𝐹 = 𝑉)
65eleq2d 2263 . . . . 5 (𝜑 → (𝑥 ∈ dom 𝐹𝑥𝑉))
72, 6sylibrd 169 . . . 4 (𝜑 → (𝑥𝐴𝑥 ∈ dom 𝐹))
8 resflem.3 . . . . 5 ((𝜑𝑥𝐴) → (𝐹𝑥) ∈ 𝑌)
98ex 115 . . . 4 (𝜑 → (𝑥𝐴 → (𝐹𝑥) ∈ 𝑌))
107, 9jcad 307 . . 3 (𝜑 → (𝑥𝐴 → (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝑌)))
1110ralrimiv 2566 . 2 (𝜑 → ∀𝑥𝐴 (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝑌))
12 ffun 5407 . . . 4 (𝐹:𝑉𝑋 → Fun 𝐹)
133, 12syl 14 . . 3 (𝜑 → Fun 𝐹)
14 ffvresb 5722 . . 3 (Fun 𝐹 → ((𝐹𝐴):𝐴𝑌 ↔ ∀𝑥𝐴 (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝑌)))
1513, 14syl 14 . 2 (𝜑 → ((𝐹𝐴):𝐴𝑌 ↔ ∀𝑥𝐴 (𝑥 ∈ dom 𝐹 ∧ (𝐹𝑥) ∈ 𝑌)))
1611, 15mpbird 167 1 (𝜑 → (𝐹𝐴):𝐴𝑌)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2164  wral 2472  wss 3154  dom cdm 4660  cres 4662  Fun wfun 5249  wf 5251  cfv 5255
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-pow 4204  ax-pr 4239
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2987  df-un 3158  df-in 3160  df-ss 3167  df-pw 3604  df-sn 3625  df-pr 3626  df-op 3628  df-uni 3837  df-br 4031  df-opab 4092  df-mpt 4093  df-id 4325  df-xp 4666  df-rel 4667  df-cnv 4668  df-co 4669  df-dm 4670  df-rn 4671  df-res 4672  df-iota 5216  df-fun 5257  df-fn 5258  df-f 5259  df-fv 5263
This theorem is referenced by:  bj-charfun  15369
  Copyright terms: Public domain W3C validator