| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > resflem | GIF version | ||
| Description: A lemma to bound the range of a restriction. The conclusion would also hold with (𝑋 ∩ 𝑌) in place of 𝑌 (provided 𝑥 does not occur in 𝑋). If that stronger result is needed, it is however simpler to use the instance of resflem 5757 where (𝑋 ∩ 𝑌) is substituted for 𝑌 (in both the conclusion and the third hypothesis). (Contributed by BJ, 4-Jul-2022.) |
| Ref | Expression |
|---|---|
| resflem.1 | ⊢ (𝜑 → 𝐹:𝑉⟶𝑋) |
| resflem.2 | ⊢ (𝜑 → 𝐴 ⊆ 𝑉) |
| resflem.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝑌) |
| Ref | Expression |
|---|---|
| resflem | ⊢ (𝜑 → (𝐹 ↾ 𝐴):𝐴⟶𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resflem.2 | . . . . . 6 ⊢ (𝜑 → 𝐴 ⊆ 𝑉) | |
| 2 | 1 | sseld 3196 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝑥 ∈ 𝑉)) |
| 3 | resflem.1 | . . . . . . 7 ⊢ (𝜑 → 𝐹:𝑉⟶𝑋) | |
| 4 | fdm 5441 | . . . . . . 7 ⊢ (𝐹:𝑉⟶𝑋 → dom 𝐹 = 𝑉) | |
| 5 | 3, 4 | syl 14 | . . . . . 6 ⊢ (𝜑 → dom 𝐹 = 𝑉) |
| 6 | 5 | eleq2d 2276 | . . . . 5 ⊢ (𝜑 → (𝑥 ∈ dom 𝐹 ↔ 𝑥 ∈ 𝑉)) |
| 7 | 2, 6 | sylibrd 169 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → 𝑥 ∈ dom 𝐹)) |
| 8 | resflem.3 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝐹‘𝑥) ∈ 𝑌) | |
| 9 | 8 | ex 115 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝐹‘𝑥) ∈ 𝑌)) |
| 10 | 7, 9 | jcad 307 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ 𝑌))) |
| 11 | 10 | ralrimiv 2579 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ 𝑌)) |
| 12 | ffun 5438 | . . . 4 ⊢ (𝐹:𝑉⟶𝑋 → Fun 𝐹) | |
| 13 | 3, 12 | syl 14 | . . 3 ⊢ (𝜑 → Fun 𝐹) |
| 14 | ffvresb 5756 | . . 3 ⊢ (Fun 𝐹 → ((𝐹 ↾ 𝐴):𝐴⟶𝑌 ↔ ∀𝑥 ∈ 𝐴 (𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ 𝑌))) | |
| 15 | 13, 14 | syl 14 | . 2 ⊢ (𝜑 → ((𝐹 ↾ 𝐴):𝐴⟶𝑌 ↔ ∀𝑥 ∈ 𝐴 (𝑥 ∈ dom 𝐹 ∧ (𝐹‘𝑥) ∈ 𝑌))) |
| 16 | 11, 15 | mpbird 167 | 1 ⊢ (𝜑 → (𝐹 ↾ 𝐴):𝐴⟶𝑌) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1373 ∈ wcel 2177 ∀wral 2485 ⊆ wss 3170 dom cdm 4683 ↾ cres 4685 Fun wfun 5274 ⟶wf 5276 ‘cfv 5280 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3003 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-mpt 4115 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-rn 4694 df-res 4695 df-iota 5241 df-fun 5282 df-fn 5283 df-f 5284 df-fv 5288 |
| This theorem is referenced by: bj-charfun 15881 |
| Copyright terms: Public domain | W3C validator |