Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > resieq | GIF version |
Description: A restricted identity relation is equivalent to equality in its domain. (Contributed by NM, 30-Apr-2004.) |
Ref | Expression |
---|---|
resieq | ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → (𝐵( I ↾ 𝐴)𝐶 ↔ 𝐵 = 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 3993 | . . . . 5 ⊢ (𝑥 = 𝐶 → (𝐵( I ↾ 𝐴)𝑥 ↔ 𝐵( I ↾ 𝐴)𝐶)) | |
2 | eqeq2 2180 | . . . . 5 ⊢ (𝑥 = 𝐶 → (𝐵 = 𝑥 ↔ 𝐵 = 𝐶)) | |
3 | 1, 2 | bibi12d 234 | . . . 4 ⊢ (𝑥 = 𝐶 → ((𝐵( I ↾ 𝐴)𝑥 ↔ 𝐵 = 𝑥) ↔ (𝐵( I ↾ 𝐴)𝐶 ↔ 𝐵 = 𝐶))) |
4 | 3 | imbi2d 229 | . . 3 ⊢ (𝑥 = 𝐶 → ((𝐵 ∈ 𝐴 → (𝐵( I ↾ 𝐴)𝑥 ↔ 𝐵 = 𝑥)) ↔ (𝐵 ∈ 𝐴 → (𝐵( I ↾ 𝐴)𝐶 ↔ 𝐵 = 𝐶)))) |
5 | vex 2733 | . . . . 5 ⊢ 𝑥 ∈ V | |
6 | 5 | opres 4900 | . . . 4 ⊢ (𝐵 ∈ 𝐴 → (〈𝐵, 𝑥〉 ∈ ( I ↾ 𝐴) ↔ 〈𝐵, 𝑥〉 ∈ I )) |
7 | df-br 3990 | . . . 4 ⊢ (𝐵( I ↾ 𝐴)𝑥 ↔ 〈𝐵, 𝑥〉 ∈ ( I ↾ 𝐴)) | |
8 | 5 | ideq 4763 | . . . . 5 ⊢ (𝐵 I 𝑥 ↔ 𝐵 = 𝑥) |
9 | df-br 3990 | . . . . 5 ⊢ (𝐵 I 𝑥 ↔ 〈𝐵, 𝑥〉 ∈ I ) | |
10 | 8, 9 | bitr3i 185 | . . . 4 ⊢ (𝐵 = 𝑥 ↔ 〈𝐵, 𝑥〉 ∈ I ) |
11 | 6, 7, 10 | 3bitr4g 222 | . . 3 ⊢ (𝐵 ∈ 𝐴 → (𝐵( I ↾ 𝐴)𝑥 ↔ 𝐵 = 𝑥)) |
12 | 4, 11 | vtoclg 2790 | . 2 ⊢ (𝐶 ∈ 𝐴 → (𝐵 ∈ 𝐴 → (𝐵( I ↾ 𝐴)𝐶 ↔ 𝐵 = 𝐶))) |
13 | 12 | impcom 124 | 1 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → (𝐵( I ↾ 𝐴)𝐶 ↔ 𝐵 = 𝐶)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1348 ∈ wcel 2141 〈cop 3586 class class class wbr 3989 I cid 4273 ↾ cres 4613 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-res 4623 |
This theorem is referenced by: foeqcnvco 5769 f1eqcocnv 5770 |
Copyright terms: Public domain | W3C validator |