| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > resieq | GIF version | ||
| Description: A restricted identity relation is equivalent to equality in its domain. (Contributed by NM, 30-Apr-2004.) |
| Ref | Expression |
|---|---|
| resieq | ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → (𝐵( I ↾ 𝐴)𝐶 ↔ 𝐵 = 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 4037 | . . . . 5 ⊢ (𝑥 = 𝐶 → (𝐵( I ↾ 𝐴)𝑥 ↔ 𝐵( I ↾ 𝐴)𝐶)) | |
| 2 | eqeq2 2206 | . . . . 5 ⊢ (𝑥 = 𝐶 → (𝐵 = 𝑥 ↔ 𝐵 = 𝐶)) | |
| 3 | 1, 2 | bibi12d 235 | . . . 4 ⊢ (𝑥 = 𝐶 → ((𝐵( I ↾ 𝐴)𝑥 ↔ 𝐵 = 𝑥) ↔ (𝐵( I ↾ 𝐴)𝐶 ↔ 𝐵 = 𝐶))) |
| 4 | 3 | imbi2d 230 | . . 3 ⊢ (𝑥 = 𝐶 → ((𝐵 ∈ 𝐴 → (𝐵( I ↾ 𝐴)𝑥 ↔ 𝐵 = 𝑥)) ↔ (𝐵 ∈ 𝐴 → (𝐵( I ↾ 𝐴)𝐶 ↔ 𝐵 = 𝐶)))) |
| 5 | vex 2766 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 6 | 5 | opres 4955 | . . . 4 ⊢ (𝐵 ∈ 𝐴 → (〈𝐵, 𝑥〉 ∈ ( I ↾ 𝐴) ↔ 〈𝐵, 𝑥〉 ∈ I )) |
| 7 | df-br 4034 | . . . 4 ⊢ (𝐵( I ↾ 𝐴)𝑥 ↔ 〈𝐵, 𝑥〉 ∈ ( I ↾ 𝐴)) | |
| 8 | 5 | ideq 4818 | . . . . 5 ⊢ (𝐵 I 𝑥 ↔ 𝐵 = 𝑥) |
| 9 | df-br 4034 | . . . . 5 ⊢ (𝐵 I 𝑥 ↔ 〈𝐵, 𝑥〉 ∈ I ) | |
| 10 | 8, 9 | bitr3i 186 | . . . 4 ⊢ (𝐵 = 𝑥 ↔ 〈𝐵, 𝑥〉 ∈ I ) |
| 11 | 6, 7, 10 | 3bitr4g 223 | . . 3 ⊢ (𝐵 ∈ 𝐴 → (𝐵( I ↾ 𝐴)𝑥 ↔ 𝐵 = 𝑥)) |
| 12 | 4, 11 | vtoclg 2824 | . 2 ⊢ (𝐶 ∈ 𝐴 → (𝐵 ∈ 𝐴 → (𝐵( I ↾ 𝐴)𝐶 ↔ 𝐵 = 𝐶))) |
| 13 | 12 | impcom 125 | 1 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → (𝐵( I ↾ 𝐴)𝐶 ↔ 𝐵 = 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 〈cop 3625 class class class wbr 4033 I cid 4323 ↾ cres 4665 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-br 4034 df-opab 4095 df-id 4328 df-xp 4669 df-rel 4670 df-res 4675 |
| This theorem is referenced by: foeqcnvco 5837 f1eqcocnv 5838 |
| Copyright terms: Public domain | W3C validator |