| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > simp3d | Unicode version | ||
| Description: Deduce a conjunct from a triple conjunction. (Contributed by NM, 4-Sep-2005.) | 
| Ref | Expression | 
|---|---|
| 3simp1d.1 | 
 | 
| Ref | Expression | 
|---|---|
| simp3d | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 3simp1d.1 | 
. 2
 | |
| 2 | simp3 1001 | 
. 2
 | |
| 3 | 1, 2 | syl 14 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 | 
| This theorem is referenced by: simp3bi 1016 erinxp 6668 resixp 6792 exmidapne 7327 addcanprleml 7681 addcanprlemu 7682 ltmprr 7709 lelttrdi 8453 ixxdisj 9978 ixxss1 9979 ixxss2 9980 ixxss12 9981 iccsupr 10041 icodisj 10067 ioom 10350 elicore 10356 intfracq 10412 flqdiv 10413 mulqaddmodid 10456 modsumfzodifsn 10488 seqf1oglem2 10612 cjmul 11050 sumtp 11579 crth 12392 eulerthlem1 12395 eulerthlemh 12399 eulerthlemth 12400 4sqlem13m 12572 ennnfonelemim 12641 ctiunct 12657 strsetsid 12711 strleund 12781 strext 12783 mhm0 13100 submcl 13111 submmnd 13112 eqger 13354 eqgcpbl 13358 lmodvsdir 13868 lssclg 13920 rnglidlmsgrp 14053 2idlcpblrng 14079 lmcvg 14453 lmff 14485 lmtopcnp 14486 xmeter 14672 xmetresbl 14676 tgqioo 14791 ivthinclemlopn 14872 ivthinclemuopn 14874 limccl 14895 limcdifap 14898 limcresi 14902 limccnpcntop 14911 limccnp2lem 14912 limccnp2cntop 14913 limccoap 14914 cosordlem 15085 relogbval 15187 relogbzcl 15188 nnlogbexp 15195 mersenne 15233 perfectlem2 15236 | 
| Copyright terms: Public domain | W3C validator |