| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp3d | Unicode version | ||
| Description: Deduce a conjunct from a triple conjunction. (Contributed by NM, 4-Sep-2005.) |
| Ref | Expression |
|---|---|
| 3simp1d.1 |
|
| Ref | Expression |
|---|---|
| simp3d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simp1d.1 |
. 2
| |
| 2 | simp3 1001 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: simp3bi 1016 erinxp 6677 resixp 6801 exmidapne 7343 addcanprleml 7698 addcanprlemu 7699 ltmprr 7726 lelttrdi 8470 ixxdisj 9995 ixxss1 9996 ixxss2 9997 ixxss12 9998 iccsupr 10058 icodisj 10084 ioom 10367 elicore 10373 intfracq 10429 flqdiv 10430 mulqaddmodid 10473 modsumfzodifsn 10505 seqf1oglem2 10629 cjmul 11067 sumtp 11596 crth 12417 eulerthlem1 12420 eulerthlemh 12424 eulerthlemth 12425 4sqlem13m 12597 ennnfonelemim 12666 ctiunct 12682 strsetsid 12736 strleund 12806 strext 12808 mhm0 13170 submcl 13181 submmnd 13182 eqger 13430 eqgcpbl 13434 lmodvsdir 13944 lssclg 13996 rnglidlmsgrp 14129 2idlcpblrng 14155 lmcvg 14537 lmff 14569 lmtopcnp 14570 xmeter 14756 xmetresbl 14760 tgqioo 14875 ivthinclemlopn 14956 ivthinclemuopn 14958 limccl 14979 limcdifap 14982 limcresi 14986 limccnpcntop 14995 limccnp2lem 14996 limccnp2cntop 14997 limccoap 14998 cosordlem 15169 relogbval 15271 relogbzcl 15272 nnlogbexp 15279 mersenne 15317 perfectlem2 15320 |
| Copyright terms: Public domain | W3C validator |