| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp3d | Unicode version | ||
| Description: Deduce a conjunct from a triple conjunction. (Contributed by NM, 4-Sep-2005.) |
| Ref | Expression |
|---|---|
| 3simp1d.1 |
|
| Ref | Expression |
|---|---|
| simp3d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simp1d.1 |
. 2
| |
| 2 | simp3 1001 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: simp3bi 1016 erinxp 6686 resixp 6810 exmidapne 7354 addcanprleml 7709 addcanprlemu 7710 ltmprr 7737 lelttrdi 8481 ixxdisj 10007 ixxss1 10008 ixxss2 10009 ixxss12 10010 iccsupr 10070 icodisj 10096 ioom 10384 elicore 10390 intfracq 10446 flqdiv 10447 mulqaddmodid 10490 modsumfzodifsn 10522 seqf1oglem2 10646 cjmul 11115 sumtp 11644 crth 12465 eulerthlem1 12468 eulerthlemh 12472 eulerthlemth 12473 4sqlem13m 12645 ennnfonelemim 12714 ctiunct 12730 strsetsid 12784 strleund 12854 strext 12856 mhm0 13218 submcl 13229 submmnd 13230 eqger 13478 eqgcpbl 13482 lmodvsdir 13992 lssclg 14044 rnglidlmsgrp 14177 2idlcpblrng 14203 lmcvg 14607 lmff 14639 lmtopcnp 14640 xmeter 14826 xmetresbl 14830 tgqioo 14945 ivthinclemlopn 15026 ivthinclemuopn 15028 limccl 15049 limcdifap 15052 limcresi 15056 limccnpcntop 15065 limccnp2lem 15066 limccnp2cntop 15067 limccoap 15068 cosordlem 15239 relogbval 15341 relogbzcl 15342 nnlogbexp 15349 mersenne 15387 perfectlem2 15390 |
| Copyright terms: Public domain | W3C validator |