| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp3d | Unicode version | ||
| Description: Deduce a conjunct from a triple conjunction. (Contributed by NM, 4-Sep-2005.) |
| Ref | Expression |
|---|---|
| 3simp1d.1 |
|
| Ref | Expression |
|---|---|
| simp3d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simp1d.1 |
. 2
| |
| 2 | simp3 1002 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 983 |
| This theorem is referenced by: simp3bi 1017 erinxp 6709 resixp 6833 exmidapne 7392 addcanprleml 7747 addcanprlemu 7748 ltmprr 7775 lelttrdi 8519 ixxdisj 10045 ixxss1 10046 ixxss2 10047 ixxss12 10048 iccsupr 10108 icodisj 10134 ioom 10425 elicore 10431 intfracq 10487 flqdiv 10488 mulqaddmodid 10531 modsumfzodifsn 10563 seqf1oglem2 10687 cjmul 11271 sumtp 11800 crth 12621 eulerthlem1 12624 eulerthlemh 12628 eulerthlemth 12629 4sqlem13m 12801 ennnfonelemim 12870 ctiunct 12886 strsetsid 12940 strleund 13010 strext 13012 mhm0 13375 submcl 13386 submmnd 13387 eqger 13635 eqgcpbl 13639 lmodvsdir 14149 lssclg 14201 rnglidlmsgrp 14334 2idlcpblrng 14360 lmcvg 14764 lmff 14796 lmtopcnp 14797 xmeter 14983 xmetresbl 14987 tgqioo 15102 ivthinclemlopn 15183 ivthinclemuopn 15185 limccl 15206 limcdifap 15209 limcresi 15213 limccnpcntop 15222 limccnp2lem 15223 limccnp2cntop 15224 limccoap 15225 cosordlem 15396 relogbval 15498 relogbzcl 15499 nnlogbexp 15506 mersenne 15544 perfectlem2 15547 |
| Copyright terms: Public domain | W3C validator |