Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > simp3d | Unicode version |
Description: Deduce a conjunct from a triple conjunction. (Contributed by NM, 4-Sep-2005.) |
Ref | Expression |
---|---|
3simp1d.1 |
Ref | Expression |
---|---|
simp3d |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3simp1d.1 | . 2 | |
2 | simp3 989 | . 2 | |
3 | 1, 2 | syl 14 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 w3a 968 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 |
This theorem depends on definitions: df-bi 116 df-3an 970 |
This theorem is referenced by: simp3bi 1004 erinxp 6575 resixp 6699 addcanprleml 7555 addcanprlemu 7556 ltmprr 7583 lelttrdi 8324 ixxdisj 9839 ixxss1 9840 ixxss2 9841 ixxss12 9842 iccsupr 9902 icodisj 9928 ioom 10196 elicore 10202 intfracq 10255 flqdiv 10256 mulqaddmodid 10299 modsumfzodifsn 10331 cjmul 10827 sumtp 11355 crth 12156 eulerthlem1 12159 eulerthlemh 12163 eulerthlemth 12164 ennnfonelemim 12357 ctiunct 12373 strsetsid 12427 strleund 12483 lmcvg 12867 lmff 12899 lmtopcnp 12900 xmeter 13086 xmetresbl 13090 tgqioo 13197 ivthinclemlopn 13264 ivthinclemuopn 13266 limccl 13278 limcdifap 13281 limcresi 13285 limccnpcntop 13294 limccnp2lem 13295 limccnp2cntop 13296 limccoap 13297 cosordlem 13420 relogbval 13519 relogbzcl 13520 nnlogbexp 13527 |
Copyright terms: Public domain | W3C validator |