| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp3d | Unicode version | ||
| Description: Deduce a conjunct from a triple conjunction. (Contributed by NM, 4-Sep-2005.) |
| Ref | Expression |
|---|---|
| 3simp1d.1 |
|
| Ref | Expression |
|---|---|
| simp3d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simp1d.1 |
. 2
| |
| 2 | simp3 1023 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 |
| This theorem is referenced by: simp3bi 1038 erinxp 6754 resixp 6878 exmidapne 7442 addcanprleml 7797 addcanprlemu 7798 ltmprr 7825 lelttrdi 8569 ixxdisj 10095 ixxss1 10096 ixxss2 10097 ixxss12 10098 iccsupr 10158 icodisj 10184 ioom 10475 elicore 10481 intfracq 10537 flqdiv 10538 mulqaddmodid 10581 modsumfzodifsn 10613 seqf1oglem2 10737 cjmul 11391 sumtp 11920 crth 12741 eulerthlem1 12744 eulerthlemh 12748 eulerthlemth 12749 4sqlem13m 12921 ennnfonelemim 12990 ctiunct 13006 strsetsid 13060 strleund 13131 strext 13133 mhm0 13496 submcl 13507 submmnd 13508 eqger 13756 eqgcpbl 13760 lmodvsdir 14270 lssclg 14322 rnglidlmsgrp 14455 2idlcpblrng 14481 lmcvg 14885 lmff 14917 lmtopcnp 14918 xmeter 15104 xmetresbl 15108 tgqioo 15223 ivthinclemlopn 15304 ivthinclemuopn 15306 limccl 15327 limcdifap 15330 limcresi 15334 limccnpcntop 15343 limccnp2lem 15344 limccnp2cntop 15345 limccoap 15346 cosordlem 15517 relogbval 15619 relogbzcl 15620 nnlogbexp 15627 mersenne 15665 perfectlem2 15668 |
| Copyright terms: Public domain | W3C validator |