| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > simp3d | Unicode version | ||
| Description: Deduce a conjunct from a triple conjunction. (Contributed by NM, 4-Sep-2005.) |
| Ref | Expression |
|---|---|
| 3simp1d.1 |
|
| Ref | Expression |
|---|---|
| simp3d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3simp1d.1 |
. 2
| |
| 2 | simp3 1001 |
. 2
| |
| 3 | 1, 2 | syl 14 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 |
| This theorem depends on definitions: df-bi 117 df-3an 982 |
| This theorem is referenced by: simp3bi 1016 erinxp 6695 resixp 6819 exmidapne 7371 addcanprleml 7726 addcanprlemu 7727 ltmprr 7754 lelttrdi 8498 ixxdisj 10024 ixxss1 10025 ixxss2 10026 ixxss12 10027 iccsupr 10087 icodisj 10113 ioom 10401 elicore 10407 intfracq 10463 flqdiv 10464 mulqaddmodid 10507 modsumfzodifsn 10539 seqf1oglem2 10663 cjmul 11138 sumtp 11667 crth 12488 eulerthlem1 12491 eulerthlemh 12495 eulerthlemth 12496 4sqlem13m 12668 ennnfonelemim 12737 ctiunct 12753 strsetsid 12807 strleund 12877 strext 12879 mhm0 13242 submcl 13253 submmnd 13254 eqger 13502 eqgcpbl 13506 lmodvsdir 14016 lssclg 14068 rnglidlmsgrp 14201 2idlcpblrng 14227 lmcvg 14631 lmff 14663 lmtopcnp 14664 xmeter 14850 xmetresbl 14854 tgqioo 14969 ivthinclemlopn 15050 ivthinclemuopn 15052 limccl 15073 limcdifap 15076 limcresi 15080 limccnpcntop 15089 limccnp2lem 15090 limccnp2cntop 15091 limccoap 15092 cosordlem 15263 relogbval 15365 relogbzcl 15366 nnlogbexp 15373 mersenne 15411 perfectlem2 15414 |
| Copyright terms: Public domain | W3C validator |