ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexima Unicode version

Theorem rexima 5706
Description: Existential quantification under an image in terms of the base set. (Contributed by Stefan O'Rear, 21-Jan-2015.)
Hypothesis
Ref Expression
rexima.x  |-  ( x  =  ( F `  y )  ->  ( ph 
<->  ps ) )
Assertion
Ref Expression
rexima  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( E. x  e.  ( F " B
) ph  <->  E. y  e.  B  ps ) )
Distinct variable groups:    ph, y    ps, x    x, F, y    x, B, y    x, A, y
Allowed substitution hints:    ph( x)    ps( y)

Proof of Theorem rexima
StepHypRef Expression
1 ssel2 3123 . . . 4  |-  ( ( B  C_  A  /\  y  e.  B )  ->  y  e.  A )
2 funfvex 5486 . . . . 5  |-  ( ( Fun  F  /\  y  e.  dom  F )  -> 
( F `  y
)  e.  _V )
32funfni 5271 . . . 4  |-  ( ( F  Fn  A  /\  y  e.  A )  ->  ( F `  y
)  e.  _V )
41, 3sylan2 284 . . 3  |-  ( ( F  Fn  A  /\  ( B  C_  A  /\  y  e.  B )
)  ->  ( F `  y )  e.  _V )
54anassrs 398 . 2  |-  ( ( ( F  Fn  A  /\  B  C_  A )  /\  y  e.  B
)  ->  ( F `  y )  e.  _V )
6 fvelimab 5525 . . 3  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( x  e.  ( F " B )  <->  E. y  e.  B  ( F `  y )  =  x ) )
7 eqcom 2159 . . . 4  |-  ( ( F `  y )  =  x  <->  x  =  ( F `  y ) )
87rexbii 2464 . . 3  |-  ( E. y  e.  B  ( F `  y )  =  x  <->  E. y  e.  B  x  =  ( F `  y ) )
96, 8bitrdi 195 . 2  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( x  e.  ( F " B )  <->  E. y  e.  B  x  =  ( F `  y ) ) )
10 rexima.x . . 3  |-  ( x  =  ( F `  y )  ->  ( ph 
<->  ps ) )
1110adantl 275 . 2  |-  ( ( ( F  Fn  A  /\  B  C_  A )  /\  x  =  ( F `  y ) )  ->  ( ph  <->  ps ) )
125, 9, 11rexxfr2d 4426 1  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( E. x  e.  ( F " B
) ph  <->  E. y  e.  B  ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1335    e. wcel 2128   E.wrex 2436   _Vcvv 2712    C_ wss 3102   "cima 4590    Fn wfn 5166   ` cfv 5171
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-14 2131  ax-ext 2139  ax-sep 4083  ax-pow 4136  ax-pr 4170
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ral 2440  df-rex 2441  df-v 2714  df-sbc 2938  df-un 3106  df-in 3108  df-ss 3115  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3774  df-br 3967  df-opab 4027  df-id 4254  df-xp 4593  df-rel 4594  df-cnv 4595  df-co 4596  df-dm 4597  df-rn 4598  df-res 4599  df-ima 4600  df-iota 5136  df-fun 5173  df-fn 5174  df-fv 5179
This theorem is referenced by:  supisolem  6953
  Copyright terms: Public domain W3C validator