ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rexima GIF version

Theorem rexima 5830
Description: Existential quantification under an image in terms of the base set. (Contributed by Stefan O'Rear, 21-Jan-2015.)
Hypothesis
Ref Expression
rexima.x (𝑥 = (𝐹𝑦) → (𝜑𝜓))
Assertion
Ref Expression
rexima ((𝐹 Fn 𝐴𝐵𝐴) → (∃𝑥 ∈ (𝐹𝐵)𝜑 ↔ ∃𝑦𝐵 𝜓))
Distinct variable groups:   𝜑,𝑦   𝜓,𝑥   𝑥,𝐹,𝑦   𝑥,𝐵,𝑦   𝑥,𝐴,𝑦
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)

Proof of Theorem rexima
StepHypRef Expression
1 ssel2 3189 . . . 4 ((𝐵𝐴𝑦𝐵) → 𝑦𝐴)
2 funfvex 5600 . . . . 5 ((Fun 𝐹𝑦 ∈ dom 𝐹) → (𝐹𝑦) ∈ V)
32funfni 5381 . . . 4 ((𝐹 Fn 𝐴𝑦𝐴) → (𝐹𝑦) ∈ V)
41, 3sylan2 286 . . 3 ((𝐹 Fn 𝐴 ∧ (𝐵𝐴𝑦𝐵)) → (𝐹𝑦) ∈ V)
54anassrs 400 . 2 (((𝐹 Fn 𝐴𝐵𝐴) ∧ 𝑦𝐵) → (𝐹𝑦) ∈ V)
6 fvelimab 5642 . . 3 ((𝐹 Fn 𝐴𝐵𝐴) → (𝑥 ∈ (𝐹𝐵) ↔ ∃𝑦𝐵 (𝐹𝑦) = 𝑥))
7 eqcom 2208 . . . 4 ((𝐹𝑦) = 𝑥𝑥 = (𝐹𝑦))
87rexbii 2514 . . 3 (∃𝑦𝐵 (𝐹𝑦) = 𝑥 ↔ ∃𝑦𝐵 𝑥 = (𝐹𝑦))
96, 8bitrdi 196 . 2 ((𝐹 Fn 𝐴𝐵𝐴) → (𝑥 ∈ (𝐹𝐵) ↔ ∃𝑦𝐵 𝑥 = (𝐹𝑦)))
10 rexima.x . . 3 (𝑥 = (𝐹𝑦) → (𝜑𝜓))
1110adantl 277 . 2 (((𝐹 Fn 𝐴𝐵𝐴) ∧ 𝑥 = (𝐹𝑦)) → (𝜑𝜓))
125, 9, 11rexxfr2d 4516 1 ((𝐹 Fn 𝐴𝐵𝐴) → (∃𝑥 ∈ (𝐹𝐵)𝜑 ↔ ∃𝑦𝐵 𝜓))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2177  wrex 2486  Vcvv 2773  wss 3167  cima 4682   Fn wfn 5271  cfv 5276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3000  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-br 4048  df-opab 4110  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-iota 5237  df-fun 5278  df-fn 5279  df-fv 5284
This theorem is referenced by:  supisolem  7117
  Copyright terms: Public domain W3C validator