| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssel2 | Unicode version | ||
| Description: Membership relationships follow from a subclass relationship. (Contributed by NM, 7-Jun-2004.) |
| Ref | Expression |
|---|---|
| ssel2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3187 |
. 2
| |
| 2 | 1 | imp 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-in 3172 df-ss 3179 |
| This theorem is referenced by: elnn 4654 funimass4 5629 fvelimab 5635 ssimaex 5640 funconstss 5698 rexima 5823 ralima 5824 1st2nd 6267 f1o2ndf1 6314 tfri1dALT 6437 eldju1st 7173 axsuploc 8145 lbinf 9021 dfinfre 9029 lbzbi 9737 elfzom1elp1fzo 10331 ssfzo12 10353 seq3split 10633 seqsplitg 10634 shftlem 11127 uzwodc 12358 subgintm 13534 subrngintm 13974 subrgintm 14005 tgcl 14536 neipsm 14626 txbasval 14739 elmopn2 14921 metrest 14978 cncfmet 15064 negcncf 15077 ply1term 15215 plyconst 15217 reeff1olem 15243 |
| Copyright terms: Public domain | W3C validator |