ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssel2 Unicode version

Theorem ssel2 3188
Description: Membership relationships follow from a subclass relationship. (Contributed by NM, 7-Jun-2004.)
Assertion
Ref Expression
ssel2  |-  ( ( A  C_  B  /\  C  e.  A )  ->  C  e.  B )

Proof of Theorem ssel2
StepHypRef Expression
1 ssel 3187 . 2  |-  ( A 
C_  B  ->  ( C  e.  A  ->  C  e.  B ) )
21imp 124 1  |-  ( ( A  C_  B  /\  C  e.  A )  ->  C  e.  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2176    C_ wss 3166
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-11 1529  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-in 3172  df-ss 3179
This theorem is referenced by:  elnn  4654  funimass4  5629  fvelimab  5635  ssimaex  5640  funconstss  5698  rexima  5823  ralima  5824  1st2nd  6267  f1o2ndf1  6314  tfri1dALT  6437  eldju1st  7173  axsuploc  8145  lbinf  9021  dfinfre  9029  lbzbi  9737  elfzom1elp1fzo  10331  ssfzo12  10353  seq3split  10633  seqsplitg  10634  shftlem  11127  uzwodc  12358  subgintm  13534  subrngintm  13974  subrgintm  14005  tgcl  14536  neipsm  14626  txbasval  14739  elmopn2  14921  metrest  14978  cncfmet  15064  negcncf  15077  ply1term  15215  plyconst  15217  reeff1olem  15243
  Copyright terms: Public domain W3C validator