ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssel2 Unicode version

Theorem ssel2 3178
Description: Membership relationships follow from a subclass relationship. (Contributed by NM, 7-Jun-2004.)
Assertion
Ref Expression
ssel2  |-  ( ( A  C_  B  /\  C  e.  A )  ->  C  e.  B )

Proof of Theorem ssel2
StepHypRef Expression
1 ssel 3177 . 2  |-  ( A 
C_  B  ->  ( C  e.  A  ->  C  e.  B ) )
21imp 124 1  |-  ( ( A  C_  B  /\  C  e.  A )  ->  C  e.  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2167    C_ wss 3157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-in 3163  df-ss 3170
This theorem is referenced by:  elnn  4642  funimass4  5611  fvelimab  5617  ssimaex  5622  funconstss  5680  rexima  5801  ralima  5802  1st2nd  6239  f1o2ndf1  6286  tfri1dALT  6409  eldju1st  7137  axsuploc  8099  lbinf  8975  dfinfre  8983  lbzbi  9690  elfzom1elp1fzo  10278  ssfzo12  10300  seq3split  10580  seqsplitg  10581  shftlem  10981  uzwodc  12204  subgintm  13328  subrngintm  13768  subrgintm  13799  tgcl  14300  neipsm  14390  txbasval  14503  elmopn2  14685  metrest  14742  cncfmet  14828  negcncf  14841  ply1term  14979  plyconst  14981  reeff1olem  15007
  Copyright terms: Public domain W3C validator