ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssel2 Unicode version

Theorem ssel2 3179
Description: Membership relationships follow from a subclass relationship. (Contributed by NM, 7-Jun-2004.)
Assertion
Ref Expression
ssel2  |-  ( ( A  C_  B  /\  C  e.  A )  ->  C  e.  B )

Proof of Theorem ssel2
StepHypRef Expression
1 ssel 3178 . 2  |-  ( A 
C_  B  ->  ( C  e.  A  ->  C  e.  B ) )
21imp 124 1  |-  ( ( A  C_  B  /\  C  e.  A )  ->  C  e.  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2167    C_ wss 3157
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-in 3163  df-ss 3170
This theorem is referenced by:  elnn  4643  funimass4  5614  fvelimab  5620  ssimaex  5625  funconstss  5683  rexima  5804  ralima  5805  1st2nd  6248  f1o2ndf1  6295  tfri1dALT  6418  eldju1st  7146  axsuploc  8116  lbinf  8992  dfinfre  9000  lbzbi  9707  elfzom1elp1fzo  10295  ssfzo12  10317  seq3split  10597  seqsplitg  10598  shftlem  10998  uzwodc  12229  subgintm  13404  subrngintm  13844  subrgintm  13875  tgcl  14384  neipsm  14474  txbasval  14587  elmopn2  14769  metrest  14826  cncfmet  14912  negcncf  14925  ply1term  15063  plyconst  15065  reeff1olem  15091
  Copyright terms: Public domain W3C validator