![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > ssel2 | Unicode version |
Description: Membership relationships follow from a subclass relationship. (Contributed by NM, 7-Jun-2004.) |
Ref | Expression |
---|---|
ssel2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3174 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | imp 124 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-11 1517 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-in 3160 df-ss 3167 |
This theorem is referenced by: elnn 4639 funimass4 5608 fvelimab 5614 ssimaex 5619 funconstss 5677 rexima 5798 ralima 5799 1st2nd 6236 f1o2ndf1 6283 tfri1dALT 6406 eldju1st 7132 axsuploc 8094 lbinf 8969 dfinfre 8977 lbzbi 9684 elfzom1elp1fzo 10272 ssfzo12 10294 seq3split 10562 seqsplitg 10563 shftlem 10963 uzwodc 12177 subgintm 13271 subrngintm 13711 subrgintm 13742 tgcl 14243 neipsm 14333 txbasval 14446 elmopn2 14628 metrest 14685 cncfmet 14771 negcncf 14784 ply1term 14922 plyconst 14924 reeff1olem 14947 |
Copyright terms: Public domain | W3C validator |