| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssel2 | Unicode version | ||
| Description: Membership relationships follow from a subclass relationship. (Contributed by NM, 7-Jun-2004.) |
| Ref | Expression |
|---|---|
| ssel2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3187 |
. 2
| |
| 2 | 1 | imp 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-in 3172 df-ss 3179 |
| This theorem is referenced by: elnn 4655 funimass4 5631 fvelimab 5637 ssimaex 5642 funconstss 5700 rexima 5825 ralima 5826 1st2nd 6269 f1o2ndf1 6316 tfri1dALT 6439 eldju1st 7175 axsuploc 8147 lbinf 9023 dfinfre 9031 lbzbi 9739 elfzom1elp1fzo 10333 ssfzo12 10355 seq3split 10635 seqsplitg 10636 shftlem 11160 uzwodc 12391 subgintm 13567 subrngintm 14007 subrgintm 14038 tgcl 14569 neipsm 14659 txbasval 14772 elmopn2 14954 metrest 15011 cncfmet 15097 negcncf 15110 ply1term 15248 plyconst 15250 reeff1olem 15276 |
| Copyright terms: Public domain | W3C validator |