| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssel2 | Unicode version | ||
| Description: Membership relationships follow from a subclass relationship. (Contributed by NM, 7-Jun-2004.) |
| Ref | Expression |
|---|---|
| ssel2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3195 |
. 2
| |
| 2 | 1 | imp 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-in 3180 df-ss 3187 |
| This theorem is referenced by: elnn 4672 funimass4 5652 fvelimab 5658 ssimaex 5663 funconstss 5721 rexima 5846 ralima 5847 1st2nd 6290 f1o2ndf1 6337 tfri1dALT 6460 eldju1st 7199 axsuploc 8180 lbinf 9056 dfinfre 9064 lbzbi 9772 elfzom1elp1fzo 10368 ssfzo12 10390 seq3split 10670 seqsplitg 10671 shftlem 11242 uzwodc 12473 subgintm 13649 subrngintm 14089 subrgintm 14120 tgcl 14651 neipsm 14741 txbasval 14854 elmopn2 15036 metrest 15093 cncfmet 15179 negcncf 15192 ply1term 15330 plyconst 15332 reeff1olem 15358 |
| Copyright terms: Public domain | W3C validator |