| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssel2 | Unicode version | ||
| Description: Membership relationships follow from a subclass relationship. (Contributed by NM, 7-Jun-2004.) |
| Ref | Expression |
|---|---|
| ssel2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3177 |
. 2
| |
| 2 | 1 | imp 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-in 3163 df-ss 3170 |
| This theorem is referenced by: elnn 4642 funimass4 5611 fvelimab 5617 ssimaex 5622 funconstss 5680 rexima 5801 ralima 5802 1st2nd 6239 f1o2ndf1 6286 tfri1dALT 6409 eldju1st 7137 axsuploc 8099 lbinf 8975 dfinfre 8983 lbzbi 9690 elfzom1elp1fzo 10278 ssfzo12 10300 seq3split 10580 seqsplitg 10581 shftlem 10981 uzwodc 12204 subgintm 13328 subrngintm 13768 subrgintm 13799 tgcl 14300 neipsm 14390 txbasval 14503 elmopn2 14685 metrest 14742 cncfmet 14828 negcncf 14841 ply1term 14979 plyconst 14981 reeff1olem 15007 |
| Copyright terms: Public domain | W3C validator |