ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssel2 Unicode version

Theorem ssel2 3137
Description: Membership relationships follow from a subclass relationship. (Contributed by NM, 7-Jun-2004.)
Assertion
Ref Expression
ssel2  |-  ( ( A  C_  B  /\  C  e.  A )  ->  C  e.  B )

Proof of Theorem ssel2
StepHypRef Expression
1 ssel 3136 . 2  |-  ( A 
C_  B  ->  ( C  e.  A  ->  C  e.  B ) )
21imp 123 1  |-  ( ( A  C_  B  /\  C  e.  A )  ->  C  e.  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 2136    C_ wss 3116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-in 3122  df-ss 3129
This theorem is referenced by:  elnn  4583  funimass4  5537  fvelimab  5542  ssimaex  5547  funconstss  5603  rexima  5723  ralima  5724  1st2nd  6149  f1o2ndf1  6196  tfri1dALT  6319  eldju1st  7036  axsuploc  7971  lbinf  8843  dfinfre  8851  lbzbi  9554  elfzom1elp1fzo  10137  ssfzo12  10159  seq3split  10414  shftlem  10758  uzwodc  11970  tgcl  12704  neipsm  12794  txbasval  12907  elmopn2  13089  metrest  13146  cncfmet  13219  negcncf  13228  reeff1olem  13332
  Copyright terms: Public domain W3C validator