| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ssel2 | Unicode version | ||
| Description: Membership relationships follow from a subclass relationship. (Contributed by NM, 7-Jun-2004.) |
| Ref | Expression |
|---|---|
| ssel2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel 3218 |
. 2
| |
| 2 | 1 | imp 124 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-in 3203 df-ss 3210 |
| This theorem is referenced by: elnn 4698 funimass4 5684 fvelimab 5690 ssimaex 5695 funconstss 5753 rexima 5878 ralima 5879 1st2nd 6327 f1o2ndf1 6374 tfri1dALT 6497 eldju1st 7238 axsuploc 8219 lbinf 9095 dfinfre 9103 lbzbi 9811 elfzom1elp1fzo 10408 ssfzo12 10430 seq3split 10710 seqsplitg 10711 shftlem 11327 uzwodc 12558 subgintm 13735 subrngintm 14176 subrgintm 14207 tgcl 14738 neipsm 14828 txbasval 14941 elmopn2 15123 metrest 15180 cncfmet 15266 negcncf 15279 ply1term 15417 plyconst 15419 reeff1olem 15445 usgruspgrben 15984 |
| Copyright terms: Public domain | W3C validator |