ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ssel2 Unicode version

Theorem ssel2 3196
Description: Membership relationships follow from a subclass relationship. (Contributed by NM, 7-Jun-2004.)
Assertion
Ref Expression
ssel2  |-  ( ( A  C_  B  /\  C  e.  A )  ->  C  e.  B )

Proof of Theorem ssel2
StepHypRef Expression
1 ssel 3195 . 2  |-  ( A 
C_  B  ->  ( C  e.  A  ->  C  e.  B ) )
21imp 124 1  |-  ( ( A  C_  B  /\  C  e.  A )  ->  C  e.  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2178    C_ wss 3174
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-in 3180  df-ss 3187
This theorem is referenced by:  elnn  4672  funimass4  5652  fvelimab  5658  ssimaex  5663  funconstss  5721  rexima  5846  ralima  5847  1st2nd  6290  f1o2ndf1  6337  tfri1dALT  6460  eldju1st  7199  axsuploc  8180  lbinf  9056  dfinfre  9064  lbzbi  9772  elfzom1elp1fzo  10368  ssfzo12  10390  seq3split  10670  seqsplitg  10671  shftlem  11242  uzwodc  12473  subgintm  13649  subrngintm  14089  subrgintm  14120  tgcl  14651  neipsm  14741  txbasval  14854  elmopn2  15036  metrest  15093  cncfmet  15179  negcncf  15192  ply1term  15330  plyconst  15332  reeff1olem  15358
  Copyright terms: Public domain W3C validator