| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > rexlimdvaa | Unicode version | ||
| Description: Inference from Theorem 19.23 of [Margaris] p. 90 (restricted quantifier version). (Contributed by Mario Carneiro, 15-Jun-2016.) |
| Ref | Expression |
|---|---|
| rexlimdvaa.1 |
|
| Ref | Expression |
|---|---|
| rexlimdvaa |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimdvaa.1 |
. . 3
| |
| 2 | 1 | expr 375 |
. 2
|
| 3 | 2 | rexlimdva 2622 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-4 1532 ax-17 1548 ax-ial 1556 ax-i5r 1557 |
| This theorem depends on definitions: df-bi 117 df-nf 1483 df-ral 2488 df-rex 2489 |
| This theorem is referenced by: rexlimddv 2627 nnsucuniel 6580 omp1eomlem 7195 ctmlemr 7209 mulgt0sr 7890 axpre-suploclemres 8013 cnegex 8249 receuap 8741 recapb 8743 rexanuz 11270 climcaucn 11633 fsumiun 11759 dvdsval2 12072 nninfctlemfo 12332 prmind2 12413 pcprmpw2 12627 pockthg 12651 dvdsrvald 13826 dvdsrd 13827 dvdsrex 13831 unitgrp 13849 isnzr2 13917 znunit 14392 tgcl 14507 neiint 14588 restopnb 14624 iscnp4 14661 blssexps 14872 blssex 14873 lgsne0 15486 lgsquadlem1 15525 |
| Copyright terms: Public domain | W3C validator |