ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdsval2 Unicode version

Theorem dvdsval2 12296
Description: One nonzero integer divides another integer if and only if their quotient is an integer. (Contributed by Jeff Hankins, 29-Sep-2013.)
Assertion
Ref Expression
dvdsval2  |-  ( ( M  e.  ZZ  /\  M  =/=  0  /\  N  e.  ZZ )  ->  ( M  ||  N  <->  ( N  /  M )  e.  ZZ ) )

Proof of Theorem dvdsval2
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 divides 12295 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  ||  N  <->  E. k  e.  ZZ  (
k  x.  M )  =  N ) )
213adant2 1040 . 2  |-  ( ( M  e.  ZZ  /\  M  =/=  0  /\  N  e.  ZZ )  ->  ( M  ||  N  <->  E. k  e.  ZZ  ( k  x.  M )  =  N ) )
3 zcn 9447 . . . . . . . . . . 11  |-  ( N  e.  ZZ  ->  N  e.  CC )
433ad2ant3 1044 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  M  =/=  0  /\  N  e.  ZZ )  ->  N  e.  CC )
54adantr 276 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  M  =/=  0  /\  N  e.  ZZ )  /\  k  e.  ZZ )  ->  N  e.  CC )
6 zcn 9447 . . . . . . . . . 10  |-  ( k  e.  ZZ  ->  k  e.  CC )
76adantl 277 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  M  =/=  0  /\  N  e.  ZZ )  /\  k  e.  ZZ )  ->  k  e.  CC )
8 zcn 9447 . . . . . . . . . . 11  |-  ( M  e.  ZZ  ->  M  e.  CC )
983ad2ant1 1042 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  M  =/=  0  /\  N  e.  ZZ )  ->  M  e.  CC )
109adantr 276 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  M  =/=  0  /\  N  e.  ZZ )  /\  k  e.  ZZ )  ->  M  e.  CC )
11 simpl2 1025 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  M  =/=  0  /\  N  e.  ZZ )  /\  k  e.  ZZ )  ->  M  =/=  0
)
12 0z 9453 . . . . . . . . . . . . 13  |-  0  e.  ZZ
13 zapne 9517 . . . . . . . . . . . . 13  |-  ( ( M  e.  ZZ  /\  0  e.  ZZ )  ->  ( M #  0  <->  M  =/=  0 ) )
1412, 13mpan2 425 . . . . . . . . . . . 12  |-  ( M  e.  ZZ  ->  ( M #  0  <->  M  =/=  0
) )
15143ad2ant1 1042 . . . . . . . . . . 11  |-  ( ( M  e.  ZZ  /\  M  =/=  0  /\  N  e.  ZZ )  ->  ( M #  0  <->  M  =/=  0
) )
1615adantr 276 . . . . . . . . . 10  |-  ( ( ( M  e.  ZZ  /\  M  =/=  0  /\  N  e.  ZZ )  /\  k  e.  ZZ )  ->  ( M #  0  <-> 
M  =/=  0 ) )
1711, 16mpbird 167 . . . . . . . . 9  |-  ( ( ( M  e.  ZZ  /\  M  =/=  0  /\  N  e.  ZZ )  /\  k  e.  ZZ )  ->  M #  0 )
185, 7, 10, 17divmulap3d 8968 . . . . . . . 8  |-  ( ( ( M  e.  ZZ  /\  M  =/=  0  /\  N  e.  ZZ )  /\  k  e.  ZZ )  ->  ( ( N  /  M )  =  k  <->  N  =  (
k  x.  M ) ) )
19 eqcom 2231 . . . . . . . 8  |-  ( N  =  ( k  x.  M )  <->  ( k  x.  M )  =  N )
2018, 19bitrdi 196 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  M  =/=  0  /\  N  e.  ZZ )  /\  k  e.  ZZ )  ->  ( ( N  /  M )  =  k  <->  ( k  x.  M )  =  N ) )
2120biimprd 158 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  M  =/=  0  /\  N  e.  ZZ )  /\  k  e.  ZZ )  ->  ( ( k  x.  M )  =  N  ->  ( N  /  M )  =  k ) )
2221impr 379 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  M  =/=  0  /\  N  e.  ZZ )  /\  ( k  e.  ZZ  /\  ( k  x.  M )  =  N ) )  -> 
( N  /  M
)  =  k )
23 simprl 529 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  M  =/=  0  /\  N  e.  ZZ )  /\  ( k  e.  ZZ  /\  ( k  x.  M )  =  N ) )  -> 
k  e.  ZZ )
2422, 23eqeltrd 2306 . . . 4  |-  ( ( ( M  e.  ZZ  /\  M  =/=  0  /\  N  e.  ZZ )  /\  ( k  e.  ZZ  /\  ( k  x.  M )  =  N ) )  -> 
( N  /  M
)  e.  ZZ )
2524rexlimdvaa 2649 . . 3  |-  ( ( M  e.  ZZ  /\  M  =/=  0  /\  N  e.  ZZ )  ->  ( E. k  e.  ZZ  ( k  x.  M
)  =  N  -> 
( N  /  M
)  e.  ZZ ) )
26 simpr 110 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  M  =/=  0  /\  N  e.  ZZ )  /\  ( N  /  M )  e.  ZZ )  ->  ( N  /  M )  e.  ZZ )
27 simp2 1022 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  M  =/=  0  /\  N  e.  ZZ )  ->  M  =/=  0 )
2827, 15mpbird 167 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  M  =/=  0  /\  N  e.  ZZ )  ->  M #  0 )
294, 9, 28divcanap1d 8934 . . . . . 6  |-  ( ( M  e.  ZZ  /\  M  =/=  0  /\  N  e.  ZZ )  ->  (
( N  /  M
)  x.  M )  =  N )
3029adantr 276 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  M  =/=  0  /\  N  e.  ZZ )  /\  ( N  /  M )  e.  ZZ )  ->  ( ( N  /  M )  x.  M )  =  N )
31 oveq1 6007 . . . . . . 7  |-  ( k  =  ( N  /  M )  ->  (
k  x.  M )  =  ( ( N  /  M )  x.  M ) )
3231eqeq1d 2238 . . . . . 6  |-  ( k  =  ( N  /  M )  ->  (
( k  x.  M
)  =  N  <->  ( ( N  /  M )  x.  M )  =  N ) )
3332rspcev 2907 . . . . 5  |-  ( ( ( N  /  M
)  e.  ZZ  /\  ( ( N  /  M )  x.  M
)  =  N )  ->  E. k  e.  ZZ  ( k  x.  M
)  =  N )
3426, 30, 33syl2anc 411 . . . 4  |-  ( ( ( M  e.  ZZ  /\  M  =/=  0  /\  N  e.  ZZ )  /\  ( N  /  M )  e.  ZZ )  ->  E. k  e.  ZZ  ( k  x.  M
)  =  N )
3534ex 115 . . 3  |-  ( ( M  e.  ZZ  /\  M  =/=  0  /\  N  e.  ZZ )  ->  (
( N  /  M
)  e.  ZZ  ->  E. k  e.  ZZ  (
k  x.  M )  =  N ) )
3625, 35impbid 129 . 2  |-  ( ( M  e.  ZZ  /\  M  =/=  0  /\  N  e.  ZZ )  ->  ( E. k  e.  ZZ  ( k  x.  M
)  =  N  <->  ( N  /  M )  e.  ZZ ) )
372, 36bitrd 188 1  |-  ( ( M  e.  ZZ  /\  M  =/=  0  /\  N  e.  ZZ )  ->  ( M  ||  N  <->  ( N  /  M )  e.  ZZ ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395    e. wcel 2200    =/= wne 2400   E.wrex 2509   class class class wbr 4082  (class class class)co 6000   CCcc 7993   0cc0 7995    x. cmul 8000   # cap 8724    / cdiv 8815   ZZcz 9442    || cdvds 12293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-br 4083  df-opab 4145  df-id 4383  df-po 4386  df-iso 4387  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-iota 5277  df-fun 5319  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-n0 9366  df-z 9443  df-dvds 12294
This theorem is referenced by:  dvdsval3  12297  nndivdvds  12302  fsumdvds  12348  divconjdvds  12355  3dvds  12370  zeo3  12374  evend2  12395  oddp1d2  12396  fldivndvdslt  12443  bitsmod  12462  divgcdz  12487  dvdsgcdidd  12510  mulgcd  12532  sqgcd  12545  lcmgcdlem  12594  mulgcddvds  12611  qredeu  12614  prmind2  12637  isprm5lem  12658  divgcdodd  12660  divnumden  12713  hashdvds  12738  hashgcdlem  12755  pythagtriplem19  12800  pcprendvds2  12809  pcpremul  12811  pc2dvds  12848  pcz  12850  dvdsprmpweqle  12855  pcadd  12858  pcmptdvds  12863  fldivp1  12866  pockthlem  12874  4sqlem8  12903  4sqlem9  12904  4sqlem12  12920  4sqlem14  12922  znidomb  14616  lgseisenlem1  15743  lgsquad2lem1  15754  lgsquad3  15757  m1lgs  15758  2sqlem3  15790  2sqlem8  15796
  Copyright terms: Public domain W3C validator