| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvdsval2 | Unicode version | ||
| Description: One nonzero integer divides another integer if and only if their quotient is an integer. (Contributed by Jeff Hankins, 29-Sep-2013.) |
| Ref | Expression |
|---|---|
| dvdsval2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divides 12175 |
. . 3
| |
| 2 | 1 | 3adant2 1019 |
. 2
|
| 3 | zcn 9397 |
. . . . . . . . . . 11
| |
| 4 | 3 | 3ad2ant3 1023 |
. . . . . . . . . 10
|
| 5 | 4 | adantr 276 |
. . . . . . . . 9
|
| 6 | zcn 9397 |
. . . . . . . . . 10
| |
| 7 | 6 | adantl 277 |
. . . . . . . . 9
|
| 8 | zcn 9397 |
. . . . . . . . . . 11
| |
| 9 | 8 | 3ad2ant1 1021 |
. . . . . . . . . 10
|
| 10 | 9 | adantr 276 |
. . . . . . . . 9
|
| 11 | simpl2 1004 |
. . . . . . . . . 10
| |
| 12 | 0z 9403 |
. . . . . . . . . . . . 13
| |
| 13 | zapne 9467 |
. . . . . . . . . . . . 13
| |
| 14 | 12, 13 | mpan2 425 |
. . . . . . . . . . . 12
|
| 15 | 14 | 3ad2ant1 1021 |
. . . . . . . . . . 11
|
| 16 | 15 | adantr 276 |
. . . . . . . . . 10
|
| 17 | 11, 16 | mpbird 167 |
. . . . . . . . 9
|
| 18 | 5, 7, 10, 17 | divmulap3d 8918 |
. . . . . . . 8
|
| 19 | eqcom 2208 |
. . . . . . . 8
| |
| 20 | 18, 19 | bitrdi 196 |
. . . . . . 7
|
| 21 | 20 | biimprd 158 |
. . . . . 6
|
| 22 | 21 | impr 379 |
. . . . 5
|
| 23 | simprl 529 |
. . . . 5
| |
| 24 | 22, 23 | eqeltrd 2283 |
. . . 4
|
| 25 | 24 | rexlimdvaa 2625 |
. . 3
|
| 26 | simpr 110 |
. . . . 5
| |
| 27 | simp2 1001 |
. . . . . . . 8
| |
| 28 | 27, 15 | mpbird 167 |
. . . . . . 7
|
| 29 | 4, 9, 28 | divcanap1d 8884 |
. . . . . 6
|
| 30 | 29 | adantr 276 |
. . . . 5
|
| 31 | oveq1 5964 |
. . . . . . 7
| |
| 32 | 31 | eqeq1d 2215 |
. . . . . 6
|
| 33 | 32 | rspcev 2881 |
. . . . 5
|
| 34 | 26, 30, 33 | syl2anc 411 |
. . . 4
|
| 35 | 34 | ex 115 |
. . 3
|
| 36 | 25, 35 | impbid 129 |
. 2
|
| 37 | 2, 36 | bitrd 188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-pow 4226 ax-pr 4261 ax-un 4488 ax-setind 4593 ax-cnex 8036 ax-resscn 8037 ax-1cn 8038 ax-1re 8039 ax-icn 8040 ax-addcl 8041 ax-addrcl 8042 ax-mulcl 8043 ax-mulrcl 8044 ax-addcom 8045 ax-mulcom 8046 ax-addass 8047 ax-mulass 8048 ax-distr 8049 ax-i2m1 8050 ax-0lt1 8051 ax-1rid 8052 ax-0id 8053 ax-rnegex 8054 ax-precex 8055 ax-cnre 8056 ax-pre-ltirr 8057 ax-pre-ltwlin 8058 ax-pre-lttrn 8059 ax-pre-apti 8060 ax-pre-ltadd 8061 ax-pre-mulgt0 8062 ax-pre-mulext 8063 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-int 3892 df-br 4052 df-opab 4114 df-id 4348 df-po 4351 df-iso 4352 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-iota 5241 df-fun 5282 df-fv 5288 df-riota 5912 df-ov 5960 df-oprab 5961 df-mpo 5962 df-pnf 8129 df-mnf 8130 df-xr 8131 df-ltxr 8132 df-le 8133 df-sub 8265 df-neg 8266 df-reap 8668 df-ap 8675 df-div 8766 df-inn 9057 df-n0 9316 df-z 9393 df-dvds 12174 |
| This theorem is referenced by: dvdsval3 12177 nndivdvds 12182 fsumdvds 12228 divconjdvds 12235 3dvds 12250 zeo3 12254 evend2 12275 oddp1d2 12276 fldivndvdslt 12323 bitsmod 12342 divgcdz 12367 dvdsgcdidd 12390 mulgcd 12412 sqgcd 12425 lcmgcdlem 12474 mulgcddvds 12491 qredeu 12494 prmind2 12517 isprm5lem 12538 divgcdodd 12540 divnumden 12593 hashdvds 12618 hashgcdlem 12635 pythagtriplem19 12680 pcprendvds2 12689 pcpremul 12691 pc2dvds 12728 pcz 12730 dvdsprmpweqle 12735 pcadd 12738 pcmptdvds 12743 fldivp1 12746 pockthlem 12754 4sqlem8 12783 4sqlem9 12784 4sqlem12 12800 4sqlem14 12802 znidomb 14495 lgseisenlem1 15622 lgsquad2lem1 15633 lgsquad3 15636 m1lgs 15637 2sqlem3 15669 2sqlem8 15675 |
| Copyright terms: Public domain | W3C validator |