Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > dvdsval2 | Unicode version |
Description: One nonzero integer divides another integer if and only if their quotient is an integer. (Contributed by Jeff Hankins, 29-Sep-2013.) |
Ref | Expression |
---|---|
dvdsval2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | divides 11751 | . . 3 | |
2 | 1 | 3adant2 1011 | . 2 |
3 | zcn 9217 | . . . . . . . . . . 11 | |
4 | 3 | 3ad2ant3 1015 | . . . . . . . . . 10 |
5 | 4 | adantr 274 | . . . . . . . . 9 |
6 | zcn 9217 | . . . . . . . . . 10 | |
7 | 6 | adantl 275 | . . . . . . . . 9 |
8 | zcn 9217 | . . . . . . . . . . 11 | |
9 | 8 | 3ad2ant1 1013 | . . . . . . . . . 10 |
10 | 9 | adantr 274 | . . . . . . . . 9 |
11 | simpl2 996 | . . . . . . . . . 10 | |
12 | 0z 9223 | . . . . . . . . . . . . 13 | |
13 | zapne 9286 | . . . . . . . . . . . . 13 # | |
14 | 12, 13 | mpan2 423 | . . . . . . . . . . . 12 # |
15 | 14 | 3ad2ant1 1013 | . . . . . . . . . . 11 # |
16 | 15 | adantr 274 | . . . . . . . . . 10 # |
17 | 11, 16 | mpbird 166 | . . . . . . . . 9 # |
18 | 5, 7, 10, 17 | divmulap3d 8742 | . . . . . . . 8 |
19 | eqcom 2172 | . . . . . . . 8 | |
20 | 18, 19 | bitrdi 195 | . . . . . . 7 |
21 | 20 | biimprd 157 | . . . . . 6 |
22 | 21 | impr 377 | . . . . 5 |
23 | simprl 526 | . . . . 5 | |
24 | 22, 23 | eqeltrd 2247 | . . . 4 |
25 | 24 | rexlimdvaa 2588 | . . 3 |
26 | simpr 109 | . . . . 5 | |
27 | simp2 993 | . . . . . . . 8 | |
28 | 27, 15 | mpbird 166 | . . . . . . 7 # |
29 | 4, 9, 28 | divcanap1d 8708 | . . . . . 6 |
30 | 29 | adantr 274 | . . . . 5 |
31 | oveq1 5860 | . . . . . . 7 | |
32 | 31 | eqeq1d 2179 | . . . . . 6 |
33 | 32 | rspcev 2834 | . . . . 5 |
34 | 26, 30, 33 | syl2anc 409 | . . . 4 |
35 | 34 | ex 114 | . . 3 |
36 | 25, 35 | impbid 128 | . 2 |
37 | 2, 36 | bitrd 187 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 973 wceq 1348 wcel 2141 wne 2340 wrex 2449 class class class wbr 3989 (class class class)co 5853 cc 7772 cc0 7774 cmul 7779 # cap 8500 cdiv 8589 cz 9212 cdvds 11749 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-mulrcl 7873 ax-addcom 7874 ax-mulcom 7875 ax-addass 7876 ax-mulass 7877 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-1rid 7881 ax-0id 7882 ax-rnegex 7883 ax-precex 7884 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-apti 7889 ax-pre-ltadd 7890 ax-pre-mulgt0 7891 ax-pre-mulext 7892 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rmo 2456 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-id 4278 df-po 4281 df-iso 4282 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-reap 8494 df-ap 8501 df-div 8590 df-inn 8879 df-n0 9136 df-z 9213 df-dvds 11750 |
This theorem is referenced by: dvdsval3 11753 nndivdvds 11758 divconjdvds 11809 zeo3 11827 evend2 11848 oddp1d2 11849 fldivndvdslt 11894 divgcdz 11926 dvdsgcdidd 11949 mulgcd 11971 sqgcd 11984 lcmgcdlem 12031 mulgcddvds 12048 qredeu 12051 prmind2 12074 isprm5lem 12095 divgcdodd 12097 divnumden 12150 hashdvds 12175 hashgcdlem 12192 pythagtriplem19 12236 pcprendvds2 12245 pcpremul 12247 pc2dvds 12283 pcz 12285 dvdsprmpweqle 12290 pcadd 12293 pcmptdvds 12297 fldivp1 12300 pockthlem 12308 4sqlem8 12337 4sqlem9 12338 2sqlem3 13747 2sqlem8 13753 |
Copyright terms: Public domain | W3C validator |