| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > dvdsval2 | Unicode version | ||
| Description: One nonzero integer divides another integer if and only if their quotient is an integer. (Contributed by Jeff Hankins, 29-Sep-2013.) |
| Ref | Expression |
|---|---|
| dvdsval2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | divides 12042 |
. . 3
| |
| 2 | 1 | 3adant2 1018 |
. 2
|
| 3 | zcn 9376 |
. . . . . . . . . . 11
| |
| 4 | 3 | 3ad2ant3 1022 |
. . . . . . . . . 10
|
| 5 | 4 | adantr 276 |
. . . . . . . . 9
|
| 6 | zcn 9376 |
. . . . . . . . . 10
| |
| 7 | 6 | adantl 277 |
. . . . . . . . 9
|
| 8 | zcn 9376 |
. . . . . . . . . . 11
| |
| 9 | 8 | 3ad2ant1 1020 |
. . . . . . . . . 10
|
| 10 | 9 | adantr 276 |
. . . . . . . . 9
|
| 11 | simpl2 1003 |
. . . . . . . . . 10
| |
| 12 | 0z 9382 |
. . . . . . . . . . . . 13
| |
| 13 | zapne 9446 |
. . . . . . . . . . . . 13
| |
| 14 | 12, 13 | mpan2 425 |
. . . . . . . . . . . 12
|
| 15 | 14 | 3ad2ant1 1020 |
. . . . . . . . . . 11
|
| 16 | 15 | adantr 276 |
. . . . . . . . . 10
|
| 17 | 11, 16 | mpbird 167 |
. . . . . . . . 9
|
| 18 | 5, 7, 10, 17 | divmulap3d 8897 |
. . . . . . . 8
|
| 19 | eqcom 2206 |
. . . . . . . 8
| |
| 20 | 18, 19 | bitrdi 196 |
. . . . . . 7
|
| 21 | 20 | biimprd 158 |
. . . . . 6
|
| 22 | 21 | impr 379 |
. . . . 5
|
| 23 | simprl 529 |
. . . . 5
| |
| 24 | 22, 23 | eqeltrd 2281 |
. . . 4
|
| 25 | 24 | rexlimdvaa 2623 |
. . 3
|
| 26 | simpr 110 |
. . . . 5
| |
| 27 | simp2 1000 |
. . . . . . . 8
| |
| 28 | 27, 15 | mpbird 167 |
. . . . . . 7
|
| 29 | 4, 9, 28 | divcanap1d 8863 |
. . . . . 6
|
| 30 | 29 | adantr 276 |
. . . . 5
|
| 31 | oveq1 5950 |
. . . . . . 7
| |
| 32 | 31 | eqeq1d 2213 |
. . . . . 6
|
| 33 | 32 | rspcev 2876 |
. . . . 5
|
| 34 | 26, 30, 33 | syl2anc 411 |
. . . 4
|
| 35 | 34 | ex 115 |
. . 3
|
| 36 | 25, 35 | impbid 129 |
. 2
|
| 37 | 2, 36 | bitrd 188 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-mulrcl 8023 ax-addcom 8024 ax-mulcom 8025 ax-addass 8026 ax-mulass 8027 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-1rid 8031 ax-0id 8032 ax-rnegex 8033 ax-precex 8034 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-apti 8039 ax-pre-ltadd 8040 ax-pre-mulgt0 8041 ax-pre-mulext 8042 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rmo 2491 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-id 4339 df-po 4342 df-iso 4343 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-iota 5231 df-fun 5272 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-reap 8647 df-ap 8654 df-div 8745 df-inn 9036 df-n0 9295 df-z 9372 df-dvds 12041 |
| This theorem is referenced by: dvdsval3 12044 nndivdvds 12049 fsumdvds 12095 divconjdvds 12102 3dvds 12117 zeo3 12121 evend2 12142 oddp1d2 12143 fldivndvdslt 12190 bitsmod 12209 divgcdz 12234 dvdsgcdidd 12257 mulgcd 12279 sqgcd 12292 lcmgcdlem 12341 mulgcddvds 12358 qredeu 12361 prmind2 12384 isprm5lem 12405 divgcdodd 12407 divnumden 12460 hashdvds 12485 hashgcdlem 12502 pythagtriplem19 12547 pcprendvds2 12556 pcpremul 12558 pc2dvds 12595 pcz 12597 dvdsprmpweqle 12602 pcadd 12605 pcmptdvds 12610 fldivp1 12613 pockthlem 12621 4sqlem8 12650 4sqlem9 12651 4sqlem12 12667 4sqlem14 12669 znidomb 14362 lgseisenlem1 15489 lgsquad2lem1 15500 lgsquad3 15503 m1lgs 15504 2sqlem3 15536 2sqlem8 15542 |
| Copyright terms: Public domain | W3C validator |