ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climcaucn Unicode version

Theorem climcaucn 11120
Description: A converging sequence of complex numbers is a Cauchy sequence. This is like climcau 11116 but adds the part that  ( F `  k ) is complex. (Contributed by Jim Kingdon, 24-Aug-2021.)
Hypothesis
Ref Expression
climcauc.1  |-  Z  =  ( ZZ>= `  M )
Assertion
Ref Expression
climcaucn  |-  ( ( M  e.  ZZ  /\  F  e.  dom  ~~>  )  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x ) )
Distinct variable groups:    j, k, x, F    j, M, k, x    j, Z, k, x

Proof of Theorem climcaucn
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 climcauc.1 . . . 4  |-  Z  =  ( ZZ>= `  M )
2 simpl 108 . . . 4  |-  ( ( M  e.  ZZ  /\  F  e.  dom  ~~>  )  ->  M  e.  ZZ )
3 1rp 9445 . . . . 5  |-  1  e.  RR+
43a1i 9 . . . 4  |-  ( ( M  e.  ZZ  /\  F  e.  dom  ~~>  )  -> 
1  e.  RR+ )
5 eqidd 2140 . . . 4  |-  ( ( ( M  e.  ZZ  /\  F  e.  dom  ~~>  )  /\  k  e.  Z )  ->  ( F `  k
)  =  ( F `
 k ) )
6 climdm 11064 . . . . . 6  |-  ( F  e.  dom  ~~>  <->  F  ~~>  (  ~~>  `  F
) )
76biimpi 119 . . . . 5  |-  ( F  e.  dom  ~~>  ->  F  ~~>  ( 
~~>  `  F ) )
87adantl 275 . . . 4  |-  ( ( M  e.  ZZ  /\  F  e.  dom  ~~>  )  ->  F 
~~>  (  ~~>  `  F ) )
91, 2, 4, 5, 8climi 11056 . . 3  |-  ( ( M  e.  ZZ  /\  F  e.  dom  ~~>  )  ->  E. n  e.  Z  A. k  e.  ( ZZ>=
`  n ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  (  ~~>  `  F
) ) )  <  1 ) )
10 simpl 108 . . . . 5  |-  ( ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  (  ~~>  `  F
) ) )  <  1 )  ->  ( F `  k )  e.  CC )
1110ralimi 2495 . . . 4  |-  ( A. k  e.  ( ZZ>= `  n ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( 
~~>  `  F ) ) )  <  1 )  ->  A. k  e.  (
ZZ>= `  n ) ( F `  k )  e.  CC )
1211reximi 2529 . . 3  |-  ( E. n  e.  Z  A. k  e.  ( ZZ>= `  n ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( 
~~>  `  F ) ) )  <  1 )  ->  E. n  e.  Z  A. k  e.  ( ZZ>=
`  n ) ( F `  k )  e.  CC )
139, 12syl 14 . 2  |-  ( ( M  e.  ZZ  /\  F  e.  dom  ~~>  )  ->  E. n  e.  Z  A. k  e.  ( ZZ>=
`  n ) ( F `  k )  e.  CC )
14 eluzelz 9335 . . . . . . . . . . . 12  |-  ( n  e.  ( ZZ>= `  M
)  ->  n  e.  ZZ )
1514, 1eleq2s 2234 . . . . . . . . . . 11  |-  ( n  e.  Z  ->  n  e.  ZZ )
16 eqid 2139 . . . . . . . . . . . 12  |-  ( ZZ>= `  n )  =  (
ZZ>= `  n )
1716climcau 11116 . . . . . . . . . . 11  |-  ( ( n  e.  ZZ  /\  F  e.  dom  ~~>  )  ->  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x )
1815, 17sylan 281 . . . . . . . . . 10  |-  ( ( n  e.  Z  /\  F  e.  dom  ~~>  )  ->  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x )
1916r19.29uz 10764 . . . . . . . . . . . 12  |-  ( ( A. k  e.  (
ZZ>= `  n ) ( F `  k )  e.  CC  /\  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  ->  E. j  e.  (
ZZ>= `  n ) A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  x
) )
2019ex 114 . . . . . . . . . . 11  |-  ( A. k  e.  ( ZZ>= `  n ) ( F `
 k )  e.  CC  ->  ( E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x  ->  E. j  e.  ( ZZ>=
`  n ) A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  x
) ) )
2120ralimdv 2500 . . . . . . . . . 10  |-  ( A. k  e.  ( ZZ>= `  n ) ( F `
 k )  e.  CC  ->  ( A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x  ->  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x ) ) )
2218, 21mpan9 279 . . . . . . . . 9  |-  ( ( ( n  e.  Z  /\  F  e.  dom  ~~>  )  /\  A. k  e.  ( ZZ>= `  n )
( F `  k
)  e.  CC )  ->  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x ) )
2322an32s 557 . . . . . . . 8  |-  ( ( ( n  e.  Z  /\  A. k  e.  (
ZZ>= `  n ) ( F `  k )  e.  CC )  /\  F  e.  dom  ~~>  )  ->  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x ) )
2423adantll 467 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  ( n  e.  Z  /\  A. k  e.  (
ZZ>= `  n ) ( F `  k )  e.  CC ) )  /\  F  e.  dom  ~~>  )  ->  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x ) )
2524ex 114 . . . . . 6  |-  ( ( M  e.  ZZ  /\  ( n  e.  Z  /\  A. k  e.  (
ZZ>= `  n ) ( F `  k )  e.  CC ) )  ->  ( F  e. 
dom 
~~>  ->  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x ) ) )
261, 16cau4 10888 . . . . . . 7  |-  ( n  e.  Z  ->  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  <->  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x ) ) )
2726ad2antrl 481 . . . . . 6  |-  ( ( M  e.  ZZ  /\  ( n  e.  Z  /\  A. k  e.  (
ZZ>= `  n ) ( F `  k )  e.  CC ) )  ->  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  <->  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x ) ) )
2825, 27sylibrd 168 . . . . 5  |-  ( ( M  e.  ZZ  /\  ( n  e.  Z  /\  A. k  e.  (
ZZ>= `  n ) ( F `  k )  e.  CC ) )  ->  ( F  e. 
dom 
~~>  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  x
) ) )
2928rexlimdvaa 2550 . . . 4  |-  ( M  e.  ZZ  ->  ( E. n  e.  Z  A. k  e.  ( ZZ>=
`  n ) ( F `  k )  e.  CC  ->  ( F  e.  dom  ~~>  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x ) ) ) )
3029com23 78 . . 3  |-  ( M  e.  ZZ  ->  ( F  e.  dom  ~~>  ->  ( E. n  e.  Z  A. k  e.  ( ZZ>=
`  n ) ( F `  k )  e.  CC  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x ) ) ) )
3130imp 123 . 2  |-  ( ( M  e.  ZZ  /\  F  e.  dom  ~~>  )  -> 
( E. n  e.  Z  A. k  e.  ( ZZ>= `  n )
( F `  k
)  e.  CC  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x ) ) )
3213, 31mpd 13 1  |-  ( ( M  e.  ZZ  /\  F  e.  dom  ~~>  )  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480   A.wral 2416   E.wrex 2417   class class class wbr 3929   dom cdm 4539   ` cfv 5123  (class class class)co 5774   CCcc 7618   1c1 7621    < clt 7800    - cmin 7933   ZZcz 9054   ZZ>=cuz 9326   RR+crp 9441   abscabs 10769    ~~> cli 11047
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-rp 9442  df-seqfrec 10219  df-exp 10293  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-clim 11048
This theorem is referenced by:  serf0  11121
  Copyright terms: Public domain W3C validator