ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climcaucn Unicode version

Theorem climcaucn 11361
Description: A converging sequence of complex numbers is a Cauchy sequence. This is like climcau 11357 but adds the part that  ( F `  k ) is complex. (Contributed by Jim Kingdon, 24-Aug-2021.)
Hypothesis
Ref Expression
climcauc.1  |-  Z  =  ( ZZ>= `  M )
Assertion
Ref Expression
climcaucn  |-  ( ( M  e.  ZZ  /\  F  e.  dom  ~~>  )  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x ) )
Distinct variable groups:    j, k, x, F    j, M, k, x    j, Z, k, x

Proof of Theorem climcaucn
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 climcauc.1 . . . 4  |-  Z  =  ( ZZ>= `  M )
2 simpl 109 . . . 4  |-  ( ( M  e.  ZZ  /\  F  e.  dom  ~~>  )  ->  M  e.  ZZ )
3 1rp 9659 . . . . 5  |-  1  e.  RR+
43a1i 9 . . . 4  |-  ( ( M  e.  ZZ  /\  F  e.  dom  ~~>  )  -> 
1  e.  RR+ )
5 eqidd 2178 . . . 4  |-  ( ( ( M  e.  ZZ  /\  F  e.  dom  ~~>  )  /\  k  e.  Z )  ->  ( F `  k
)  =  ( F `
 k ) )
6 climdm 11305 . . . . . 6  |-  ( F  e.  dom  ~~>  <->  F  ~~>  (  ~~>  `  F
) )
76biimpi 120 . . . . 5  |-  ( F  e.  dom  ~~>  ->  F  ~~>  ( 
~~>  `  F ) )
87adantl 277 . . . 4  |-  ( ( M  e.  ZZ  /\  F  e.  dom  ~~>  )  ->  F 
~~>  (  ~~>  `  F ) )
91, 2, 4, 5, 8climi 11297 . . 3  |-  ( ( M  e.  ZZ  /\  F  e.  dom  ~~>  )  ->  E. n  e.  Z  A. k  e.  ( ZZ>=
`  n ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  (  ~~>  `  F
) ) )  <  1 ) )
10 simpl 109 . . . . 5  |-  ( ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  (  ~~>  `  F
) ) )  <  1 )  ->  ( F `  k )  e.  CC )
1110ralimi 2540 . . . 4  |-  ( A. k  e.  ( ZZ>= `  n ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( 
~~>  `  F ) ) )  <  1 )  ->  A. k  e.  (
ZZ>= `  n ) ( F `  k )  e.  CC )
1211reximi 2574 . . 3  |-  ( E. n  e.  Z  A. k  e.  ( ZZ>= `  n ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( 
~~>  `  F ) ) )  <  1 )  ->  E. n  e.  Z  A. k  e.  ( ZZ>=
`  n ) ( F `  k )  e.  CC )
139, 12syl 14 . 2  |-  ( ( M  e.  ZZ  /\  F  e.  dom  ~~>  )  ->  E. n  e.  Z  A. k  e.  ( ZZ>=
`  n ) ( F `  k )  e.  CC )
14 eluzelz 9539 . . . . . . . . . . . 12  |-  ( n  e.  ( ZZ>= `  M
)  ->  n  e.  ZZ )
1514, 1eleq2s 2272 . . . . . . . . . . 11  |-  ( n  e.  Z  ->  n  e.  ZZ )
16 eqid 2177 . . . . . . . . . . . 12  |-  ( ZZ>= `  n )  =  (
ZZ>= `  n )
1716climcau 11357 . . . . . . . . . . 11  |-  ( ( n  e.  ZZ  /\  F  e.  dom  ~~>  )  ->  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x )
1815, 17sylan 283 . . . . . . . . . 10  |-  ( ( n  e.  Z  /\  F  e.  dom  ~~>  )  ->  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x )
1916r19.29uz 11003 . . . . . . . . . . . 12  |-  ( ( A. k  e.  (
ZZ>= `  n ) ( F `  k )  e.  CC  /\  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  ->  E. j  e.  (
ZZ>= `  n ) A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  x
) )
2019ex 115 . . . . . . . . . . 11  |-  ( A. k  e.  ( ZZ>= `  n ) ( F `
 k )  e.  CC  ->  ( E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x  ->  E. j  e.  ( ZZ>=
`  n ) A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  x
) ) )
2120ralimdv 2545 . . . . . . . . . 10  |-  ( A. k  e.  ( ZZ>= `  n ) ( F `
 k )  e.  CC  ->  ( A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x  ->  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x ) ) )
2218, 21mpan9 281 . . . . . . . . 9  |-  ( ( ( n  e.  Z  /\  F  e.  dom  ~~>  )  /\  A. k  e.  ( ZZ>= `  n )
( F `  k
)  e.  CC )  ->  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x ) )
2322an32s 568 . . . . . . . 8  |-  ( ( ( n  e.  Z  /\  A. k  e.  (
ZZ>= `  n ) ( F `  k )  e.  CC )  /\  F  e.  dom  ~~>  )  ->  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x ) )
2423adantll 476 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  ( n  e.  Z  /\  A. k  e.  (
ZZ>= `  n ) ( F `  k )  e.  CC ) )  /\  F  e.  dom  ~~>  )  ->  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x ) )
2524ex 115 . . . . . 6  |-  ( ( M  e.  ZZ  /\  ( n  e.  Z  /\  A. k  e.  (
ZZ>= `  n ) ( F `  k )  e.  CC ) )  ->  ( F  e. 
dom 
~~>  ->  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x ) ) )
261, 16cau4 11127 . . . . . . 7  |-  ( n  e.  Z  ->  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  <->  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x ) ) )
2726ad2antrl 490 . . . . . 6  |-  ( ( M  e.  ZZ  /\  ( n  e.  Z  /\  A. k  e.  (
ZZ>= `  n ) ( F `  k )  e.  CC ) )  ->  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  <->  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x ) ) )
2825, 27sylibrd 169 . . . . 5  |-  ( ( M  e.  ZZ  /\  ( n  e.  Z  /\  A. k  e.  (
ZZ>= `  n ) ( F `  k )  e.  CC ) )  ->  ( F  e. 
dom 
~~>  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  x
) ) )
2928rexlimdvaa 2595 . . . 4  |-  ( M  e.  ZZ  ->  ( E. n  e.  Z  A. k  e.  ( ZZ>=
`  n ) ( F `  k )  e.  CC  ->  ( F  e.  dom  ~~>  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x ) ) ) )
3029com23 78 . . 3  |-  ( M  e.  ZZ  ->  ( F  e.  dom  ~~>  ->  ( E. n  e.  Z  A. k  e.  ( ZZ>=
`  n ) ( F `  k )  e.  CC  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x ) ) ) )
3130imp 124 . 2  |-  ( ( M  e.  ZZ  /\  F  e.  dom  ~~>  )  -> 
( E. n  e.  Z  A. k  e.  ( ZZ>= `  n )
( F `  k
)  e.  CC  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x ) ) )
3213, 31mpd 13 1  |-  ( ( M  e.  ZZ  /\  F  e.  dom  ~~>  )  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   A.wral 2455   E.wrex 2456   class class class wbr 4005   dom cdm 4628   ` cfv 5218  (class class class)co 5877   CCcc 7811   1c1 7814    < clt 7994    - cmin 8130   ZZcz 9255   ZZ>=cuz 9530   RR+crp 9655   abscabs 11008    ~~> cli 11288
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931  ax-arch 7932  ax-caucvg 7933
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-frec 6394  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-inn 8922  df-2 8980  df-3 8981  df-4 8982  df-n0 9179  df-z 9256  df-uz 9531  df-rp 9656  df-seqfrec 10448  df-exp 10522  df-cj 10853  df-re 10854  df-im 10855  df-rsqrt 11009  df-abs 11010  df-clim 11289
This theorem is referenced by:  serf0  11362
  Copyright terms: Public domain W3C validator