ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  climcaucn Unicode version

Theorem climcaucn 10740
Description: A converging sequence of complex numbers is a Cauchy sequence. This is like climcau 10736 but adds the part that  ( F `  k ) is complex. (Contributed by Jim Kingdon, 24-Aug-2021.)
Hypothesis
Ref Expression
climcauc.1  |-  Z  =  ( ZZ>= `  M )
Assertion
Ref Expression
climcaucn  |-  ( ( M  e.  ZZ  /\  F  e.  dom  ~~>  )  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x ) )
Distinct variable groups:    j, k, x, F    j, M, k, x    j, Z, k, x

Proof of Theorem climcaucn
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 climcauc.1 . . . 4  |-  Z  =  ( ZZ>= `  M )
2 simpl 107 . . . 4  |-  ( ( M  e.  ZZ  /\  F  e.  dom  ~~>  )  ->  M  e.  ZZ )
3 1rp 9138 . . . . 5  |-  1  e.  RR+
43a1i 9 . . . 4  |-  ( ( M  e.  ZZ  /\  F  e.  dom  ~~>  )  -> 
1  e.  RR+ )
5 eqidd 2089 . . . 4  |-  ( ( ( M  e.  ZZ  /\  F  e.  dom  ~~>  )  /\  k  e.  Z )  ->  ( F `  k
)  =  ( F `
 k ) )
6 climdm 10683 . . . . . 6  |-  ( F  e.  dom  ~~>  <->  F  ~~>  (  ~~>  `  F
) )
76biimpi 118 . . . . 5  |-  ( F  e.  dom  ~~>  ->  F  ~~>  ( 
~~>  `  F ) )
87adantl 271 . . . 4  |-  ( ( M  e.  ZZ  /\  F  e.  dom  ~~>  )  ->  F 
~~>  (  ~~>  `  F ) )
91, 2, 4, 5, 8climi 10675 . . 3  |-  ( ( M  e.  ZZ  /\  F  e.  dom  ~~>  )  ->  E. n  e.  Z  A. k  e.  ( ZZ>=
`  n ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  (  ~~>  `  F
) ) )  <  1 ) )
10 simpl 107 . . . . 5  |-  ( ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  (  ~~>  `  F
) ) )  <  1 )  ->  ( F `  k )  e.  CC )
1110ralimi 2438 . . . 4  |-  ( A. k  e.  ( ZZ>= `  n ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( 
~~>  `  F ) ) )  <  1 )  ->  A. k  e.  (
ZZ>= `  n ) ( F `  k )  e.  CC )
1211reximi 2470 . . 3  |-  ( E. n  e.  Z  A. k  e.  ( ZZ>= `  n ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( 
~~>  `  F ) ) )  <  1 )  ->  E. n  e.  Z  A. k  e.  ( ZZ>=
`  n ) ( F `  k )  e.  CC )
139, 12syl 14 . 2  |-  ( ( M  e.  ZZ  /\  F  e.  dom  ~~>  )  ->  E. n  e.  Z  A. k  e.  ( ZZ>=
`  n ) ( F `  k )  e.  CC )
14 eluzelz 9028 . . . . . . . . . . . 12  |-  ( n  e.  ( ZZ>= `  M
)  ->  n  e.  ZZ )
1514, 1eleq2s 2182 . . . . . . . . . . 11  |-  ( n  e.  Z  ->  n  e.  ZZ )
16 eqid 2088 . . . . . . . . . . . 12  |-  ( ZZ>= `  n )  =  (
ZZ>= `  n )
1716climcau 10736 . . . . . . . . . . 11  |-  ( ( n  e.  ZZ  /\  F  e.  dom  ~~>  )  ->  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x )
1815, 17sylan 277 . . . . . . . . . 10  |-  ( ( n  e.  Z  /\  F  e.  dom  ~~>  )  ->  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x )
1916r19.29uz 10425 . . . . . . . . . . . 12  |-  ( ( A. k  e.  (
ZZ>= `  n ) ( F `  k )  e.  CC  /\  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  ->  E. j  e.  (
ZZ>= `  n ) A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  x
) )
2019ex 113 . . . . . . . . . . 11  |-  ( A. k  e.  ( ZZ>= `  n ) ( F `
 k )  e.  CC  ->  ( E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>= `  j )
( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x  ->  E. j  e.  ( ZZ>=
`  n ) A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  x
) ) )
2120ralimdv 2442 . . . . . . . . . 10  |-  ( A. k  e.  ( ZZ>= `  n ) ( F `
 k )  e.  CC  ->  ( A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x  ->  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x ) ) )
2218, 21mpan9 275 . . . . . . . . 9  |-  ( ( ( n  e.  Z  /\  F  e.  dom  ~~>  )  /\  A. k  e.  ( ZZ>= `  n )
( F `  k
)  e.  CC )  ->  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x ) )
2322an32s 535 . . . . . . . 8  |-  ( ( ( n  e.  Z  /\  A. k  e.  (
ZZ>= `  n ) ( F `  k )  e.  CC )  /\  F  e.  dom  ~~>  )  ->  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x ) )
2423adantll 460 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  ( n  e.  Z  /\  A. k  e.  (
ZZ>= `  n ) ( F `  k )  e.  CC ) )  /\  F  e.  dom  ~~>  )  ->  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x ) )
2524ex 113 . . . . . 6  |-  ( ( M  e.  ZZ  /\  ( n  e.  Z  /\  A. k  e.  (
ZZ>= `  n ) ( F `  k )  e.  CC ) )  ->  ( F  e. 
dom 
~~>  ->  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x ) ) )
261, 16cau4 10549 . . . . . . 7  |-  ( n  e.  Z  ->  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  <->  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x ) ) )
2726ad2antrl 474 . . . . . 6  |-  ( ( M  e.  ZZ  /\  ( n  e.  Z  /\  A. k  e.  (
ZZ>= `  n ) ( F `  k )  e.  CC ) )  ->  ( A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x )  <->  A. x  e.  RR+  E. j  e.  ( ZZ>= `  n ) A. k  e.  ( ZZ>=
`  j ) ( ( F `  k
)  e.  CC  /\  ( abs `  ( ( F `  k )  -  ( F `  j ) ) )  <  x ) ) )
2825, 27sylibrd 167 . . . . 5  |-  ( ( M  e.  ZZ  /\  ( n  e.  Z  /\  A. k  e.  (
ZZ>= `  n ) ( F `  k )  e.  CC ) )  ->  ( F  e. 
dom 
~~>  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j ) ( ( F `  k )  e.  CC  /\  ( abs `  ( ( F `
 k )  -  ( F `  j ) ) )  <  x
) ) )
2928rexlimdvaa 2490 . . . 4  |-  ( M  e.  ZZ  ->  ( E. n  e.  Z  A. k  e.  ( ZZ>=
`  n ) ( F `  k )  e.  CC  ->  ( F  e.  dom  ~~>  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x ) ) ) )
3029com23 77 . . 3  |-  ( M  e.  ZZ  ->  ( F  e.  dom  ~~>  ->  ( E. n  e.  Z  A. k  e.  ( ZZ>=
`  n ) ( F `  k )  e.  CC  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x ) ) ) )
3130imp 122 . 2  |-  ( ( M  e.  ZZ  /\  F  e.  dom  ~~>  )  -> 
( E. n  e.  Z  A. k  e.  ( ZZ>= `  n )
( F `  k
)  e.  CC  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x ) ) )
3213, 31mpd 13 1  |-  ( ( M  e.  ZZ  /\  F  e.  dom  ~~>  )  ->  A. x  e.  RR+  E. j  e.  Z  A. k  e.  ( ZZ>= `  j )
( ( F `  k )  e.  CC  /\  ( abs `  (
( F `  k
)  -  ( F `
 j ) ) )  <  x ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1289    e. wcel 1438   A.wral 2359   E.wrex 2360   class class class wbr 3845   dom cdm 4438   ` cfv 5015  (class class class)co 5652   CCcc 7348   1c1 7351    < clt 7522    - cmin 7653   ZZcz 8750   ZZ>=cuz 9019   RR+crp 9134   abscabs 10430    ~~> cli 10666
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3954  ax-sep 3957  ax-nul 3965  ax-pow 4009  ax-pr 4036  ax-un 4260  ax-setind 4353  ax-iinf 4403  ax-cnex 7436  ax-resscn 7437  ax-1cn 7438  ax-1re 7439  ax-icn 7440  ax-addcl 7441  ax-addrcl 7442  ax-mulcl 7443  ax-mulrcl 7444  ax-addcom 7445  ax-mulcom 7446  ax-addass 7447  ax-mulass 7448  ax-distr 7449  ax-i2m1 7450  ax-0lt1 7451  ax-1rid 7452  ax-0id 7453  ax-rnegex 7454  ax-precex 7455  ax-cnre 7456  ax-pre-ltirr 7457  ax-pre-ltwlin 7458  ax-pre-lttrn 7459  ax-pre-apti 7460  ax-pre-ltadd 7461  ax-pre-mulgt0 7462  ax-pre-mulext 7463  ax-arch 7464  ax-caucvg 7465
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rmo 2367  df-rab 2368  df-v 2621  df-sbc 2841  df-csb 2934  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-nul 3287  df-if 3394  df-pw 3431  df-sn 3452  df-pr 3453  df-op 3455  df-uni 3654  df-int 3689  df-iun 3732  df-br 3846  df-opab 3900  df-mpt 3901  df-tr 3937  df-id 4120  df-po 4123  df-iso 4124  df-iord 4193  df-on 4195  df-ilim 4196  df-suc 4198  df-iom 4406  df-xp 4444  df-rel 4445  df-cnv 4446  df-co 4447  df-dm 4448  df-rn 4449  df-res 4450  df-ima 4451  df-iota 4980  df-fun 5017  df-fn 5018  df-f 5019  df-f1 5020  df-fo 5021  df-f1o 5022  df-fv 5023  df-riota 5608  df-ov 5655  df-oprab 5656  df-mpt2 5657  df-1st 5911  df-2nd 5912  df-recs 6070  df-frec 6156  df-pnf 7524  df-mnf 7525  df-xr 7526  df-ltxr 7527  df-le 7528  df-sub 7655  df-neg 7656  df-reap 8052  df-ap 8059  df-div 8140  df-inn 8423  df-2 8481  df-3 8482  df-4 8483  df-n0 8674  df-z 8751  df-uz 9020  df-rp 9135  df-iseq 9853  df-seq3 9854  df-exp 9955  df-cj 10276  df-re 10277  df-im 10278  df-rsqrt 10431  df-abs 10432  df-clim 10667
This theorem is referenced by:  serf0  10741
  Copyright terms: Public domain W3C validator