ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  blssexps Unicode version

Theorem blssexps 15016
Description: Two ways to express the existence of a ball subset. (Contributed by NM, 5-May-2007.) (Revised by Mario Carneiro, 12-Nov-2013.) (Revised by Thierry Arnoux, 11-Mar-2018.)
Assertion
Ref Expression
blssexps  |-  ( ( D  e.  (PsMet `  X )  /\  P  e.  X )  ->  ( E. x  e.  ran  ( ball `  D )
( P  e.  x  /\  x  C_  A )  <->  E. r  e.  RR+  ( P ( ball `  D
) r )  C_  A ) )
Distinct variable groups:    x, r, A    D, r, x    P, r, x    X, r, x

Proof of Theorem blssexps
StepHypRef Expression
1 blssps 15014 . . . . . . 7  |-  ( ( D  e.  (PsMet `  X )  /\  x  e.  ran  ( ball `  D
)  /\  P  e.  x )  ->  E. r  e.  RR+  ( P (
ball `  D )
r )  C_  x
)
2 sstr 3209 . . . . . . . . 9  |-  ( ( ( P ( ball `  D ) r ) 
C_  x  /\  x  C_  A )  ->  ( P ( ball `  D
) r )  C_  A )
32expcom 116 . . . . . . . 8  |-  ( x 
C_  A  ->  (
( P ( ball `  D ) r ) 
C_  x  ->  ( P ( ball `  D
) r )  C_  A ) )
43reximdv 2609 . . . . . . 7  |-  ( x 
C_  A  ->  ( E. r  e.  RR+  ( P ( ball `  D
) r )  C_  x  ->  E. r  e.  RR+  ( P ( ball `  D
) r )  C_  A ) )
51, 4syl5com 29 . . . . . 6  |-  ( ( D  e.  (PsMet `  X )  /\  x  e.  ran  ( ball `  D
)  /\  P  e.  x )  ->  (
x  C_  A  ->  E. r  e.  RR+  ( P ( ball `  D
) r )  C_  A ) )
653expa 1206 . . . . 5  |-  ( ( ( D  e.  (PsMet `  X )  /\  x  e.  ran  ( ball `  D
) )  /\  P  e.  x )  ->  (
x  C_  A  ->  E. r  e.  RR+  ( P ( ball `  D
) r )  C_  A ) )
76expimpd 363 . . . 4  |-  ( ( D  e.  (PsMet `  X )  /\  x  e.  ran  ( ball `  D
) )  ->  (
( P  e.  x  /\  x  C_  A )  ->  E. r  e.  RR+  ( P ( ball `  D
) r )  C_  A ) )
87adantlr 477 . . 3  |-  ( ( ( D  e.  (PsMet `  X )  /\  P  e.  X )  /\  x  e.  ran  ( ball `  D
) )  ->  (
( P  e.  x  /\  x  C_  A )  ->  E. r  e.  RR+  ( P ( ball `  D
) r )  C_  A ) )
98rexlimdva 2625 . 2  |-  ( ( D  e.  (PsMet `  X )  /\  P  e.  X )  ->  ( E. x  e.  ran  ( ball `  D )
( P  e.  x  /\  x  C_  A )  ->  E. r  e.  RR+  ( P ( ball `  D
) r )  C_  A ) )
10 simpll 527 . . . . 5  |-  ( ( ( D  e.  (PsMet `  X )  /\  P  e.  X )  /\  (
r  e.  RR+  /\  ( P ( ball `  D
) r )  C_  A ) )  ->  D  e.  (PsMet `  X
) )
11 simplr 528 . . . . 5  |-  ( ( ( D  e.  (PsMet `  X )  /\  P  e.  X )  /\  (
r  e.  RR+  /\  ( P ( ball `  D
) r )  C_  A ) )  ->  P  e.  X )
12 rpxr 9818 . . . . . 6  |-  ( r  e.  RR+  ->  r  e. 
RR* )
1312ad2antrl 490 . . . . 5  |-  ( ( ( D  e.  (PsMet `  X )  /\  P  e.  X )  /\  (
r  e.  RR+  /\  ( P ( ball `  D
) r )  C_  A ) )  -> 
r  e.  RR* )
14 blelrnps 15006 . . . . 5  |-  ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  r  e.  RR* )  ->  ( P ( ball `  D
) r )  e. 
ran  ( ball `  D
) )
1510, 11, 13, 14syl3anc 1250 . . . 4  |-  ( ( ( D  e.  (PsMet `  X )  /\  P  e.  X )  /\  (
r  e.  RR+  /\  ( P ( ball `  D
) r )  C_  A ) )  -> 
( P ( ball `  D ) r )  e.  ran  ( ball `  D ) )
16 simprl 529 . . . . 5  |-  ( ( ( D  e.  (PsMet `  X )  /\  P  e.  X )  /\  (
r  e.  RR+  /\  ( P ( ball `  D
) r )  C_  A ) )  -> 
r  e.  RR+ )
17 blcntrps 15002 . . . . 5  |-  ( ( D  e.  (PsMet `  X )  /\  P  e.  X  /\  r  e.  RR+ )  ->  P  e.  ( P ( ball `  D ) r ) )
1810, 11, 16, 17syl3anc 1250 . . . 4  |-  ( ( ( D  e.  (PsMet `  X )  /\  P  e.  X )  /\  (
r  e.  RR+  /\  ( P ( ball `  D
) r )  C_  A ) )  ->  P  e.  ( P
( ball `  D )
r ) )
19 simprr 531 . . . 4  |-  ( ( ( D  e.  (PsMet `  X )  /\  P  e.  X )  /\  (
r  e.  RR+  /\  ( P ( ball `  D
) r )  C_  A ) )  -> 
( P ( ball `  D ) r ) 
C_  A )
20 eleq2 2271 . . . . . 6  |-  ( x  =  ( P (
ball `  D )
r )  ->  ( P  e.  x  <->  P  e.  ( P ( ball `  D
) r ) ) )
21 sseq1 3224 . . . . . 6  |-  ( x  =  ( P (
ball `  D )
r )  ->  (
x  C_  A  <->  ( P
( ball `  D )
r )  C_  A
) )
2220, 21anbi12d 473 . . . . 5  |-  ( x  =  ( P (
ball `  D )
r )  ->  (
( P  e.  x  /\  x  C_  A )  <-> 
( P  e.  ( P ( ball `  D
) r )  /\  ( P ( ball `  D
) r )  C_  A ) ) )
2322rspcev 2884 . . . 4  |-  ( ( ( P ( ball `  D ) r )  e.  ran  ( ball `  D )  /\  ( P  e.  ( P
( ball `  D )
r )  /\  ( P ( ball `  D
) r )  C_  A ) )  ->  E. x  e.  ran  ( ball `  D )
( P  e.  x  /\  x  C_  A ) )
2415, 18, 19, 23syl12anc 1248 . . 3  |-  ( ( ( D  e.  (PsMet `  X )  /\  P  e.  X )  /\  (
r  e.  RR+  /\  ( P ( ball `  D
) r )  C_  A ) )  ->  E. x  e.  ran  ( ball `  D )
( P  e.  x  /\  x  C_  A ) )
2524rexlimdvaa 2626 . 2  |-  ( ( D  e.  (PsMet `  X )  /\  P  e.  X )  ->  ( E. r  e.  RR+  ( P ( ball `  D
) r )  C_  A  ->  E. x  e.  ran  ( ball `  D )
( P  e.  x  /\  x  C_  A ) ) )
269, 25impbid 129 1  |-  ( ( D  e.  (PsMet `  X )  /\  P  e.  X )  ->  ( E. x  e.  ran  ( ball `  D )
( P  e.  x  /\  x  C_  A )  <->  E. r  e.  RR+  ( P ( ball `  D
) r )  C_  A ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2178   E.wrex 2487    C_ wss 3174   ran crn 4694   ` cfv 5290  (class class class)co 5967   RR*cxr 8141   RR+crp 9810  PsMetcpsmet 14412   ballcbl 14415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-po 4361  df-iso 4362  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-map 6760  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-n0 9331  df-z 9408  df-uz 9684  df-q 9776  df-rp 9811  df-xneg 9929  df-xadd 9930  df-psmet 14420  df-bl 14423
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator