Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > blssex | Unicode version |
Description: Two ways to express the existence of a ball subset. (Contributed by NM, 5-May-2007.) (Revised by Mario Carneiro, 12-Nov-2013.) |
Ref | Expression |
---|---|
blssex |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | blss 12788 | . . . . . . 7 | |
2 | sstr 3136 | . . . . . . . . 9 | |
3 | 2 | expcom 115 | . . . . . . . 8 |
4 | 3 | reximdv 2558 | . . . . . . 7 |
5 | 1, 4 | syl5com 29 | . . . . . 6 |
6 | 5 | 3expa 1185 | . . . . 5 |
7 | 6 | expimpd 361 | . . . 4 |
8 | 7 | adantlr 469 | . . 3 |
9 | 8 | rexlimdva 2574 | . 2 |
10 | simpll 519 | . . . . 5 | |
11 | simplr 520 | . . . . 5 | |
12 | rpxr 9550 | . . . . . 6 | |
13 | 12 | ad2antrl 482 | . . . . 5 |
14 | blelrn 12780 | . . . . 5 | |
15 | 10, 11, 13, 14 | syl3anc 1220 | . . . 4 |
16 | simprl 521 | . . . . 5 | |
17 | blcntr 12776 | . . . . 5 | |
18 | 10, 11, 16, 17 | syl3anc 1220 | . . . 4 |
19 | simprr 522 | . . . 4 | |
20 | eleq2 2221 | . . . . . 6 | |
21 | sseq1 3151 | . . . . . 6 | |
22 | 20, 21 | anbi12d 465 | . . . . 5 |
23 | 22 | rspcev 2816 | . . . 4 |
24 | 15, 18, 19, 23 | syl12anc 1218 | . . 3 |
25 | 24 | rexlimdvaa 2575 | . 2 |
26 | 9, 25 | impbid 128 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 w3a 963 wceq 1335 wcel 2128 wrex 2436 wss 3102 crn 4584 cfv 5167 (class class class)co 5818 cxr 7894 crp 9542 cxmet 12340 cbl 12342 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4134 ax-pr 4168 ax-un 4392 ax-setind 4494 ax-cnex 7806 ax-resscn 7807 ax-1cn 7808 ax-1re 7809 ax-icn 7810 ax-addcl 7811 ax-addrcl 7812 ax-mulcl 7813 ax-mulrcl 7814 ax-addcom 7815 ax-mulcom 7816 ax-addass 7817 ax-mulass 7818 ax-distr 7819 ax-i2m1 7820 ax-0lt1 7821 ax-1rid 7822 ax-0id 7823 ax-rnegex 7824 ax-precex 7825 ax-cnre 7826 ax-pre-ltirr 7827 ax-pre-ltwlin 7828 ax-pre-lttrn 7829 ax-pre-apti 7830 ax-pre-ltadd 7831 ax-pre-mulgt0 7832 ax-pre-mulext 7833 ax-arch 7834 |
This theorem depends on definitions: df-bi 116 df-stab 817 df-dc 821 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rmo 2443 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-if 3506 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-id 4252 df-po 4255 df-iso 4256 df-xp 4589 df-rel 4590 df-cnv 4591 df-co 4592 df-dm 4593 df-rn 4594 df-res 4595 df-ima 4596 df-iota 5132 df-fun 5169 df-fn 5170 df-f 5171 df-fv 5175 df-riota 5774 df-ov 5821 df-oprab 5822 df-mpo 5823 df-1st 6082 df-2nd 6083 df-map 6588 df-pnf 7897 df-mnf 7898 df-xr 7899 df-ltxr 7900 df-le 7901 df-sub 8031 df-neg 8032 df-reap 8433 df-ap 8440 df-div 8529 df-inn 8817 df-2 8875 df-n0 9074 df-z 9151 df-uz 9423 df-q 9511 df-rp 9543 df-xneg 9661 df-xadd 9662 df-psmet 12347 df-xmet 12348 df-bl 12350 |
This theorem is referenced by: blbas 12793 elmopn2 12809 mopni2 12843 metss 12854 tgioo 12906 |
Copyright terms: Public domain | W3C validator |