ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  blssex Unicode version

Theorem blssex 12599
Description: Two ways to express the existence of a ball subset. (Contributed by NM, 5-May-2007.) (Revised by Mario Carneiro, 12-Nov-2013.)
Assertion
Ref Expression
blssex  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X
)  ->  ( E. x  e.  ran  ( ball `  D ) ( P  e.  x  /\  x  C_  A )  <->  E. r  e.  RR+  ( P (
ball `  D )
r )  C_  A
) )
Distinct variable groups:    x, r, A    D, r, x    P, r, x    X, r, x

Proof of Theorem blssex
StepHypRef Expression
1 blss 12597 . . . . . . 7  |-  ( ( D  e.  ( *Met `  X )  /\  x  e.  ran  ( ball `  D )  /\  P  e.  x
)  ->  E. r  e.  RR+  ( P (
ball `  D )
r )  C_  x
)
2 sstr 3105 . . . . . . . . 9  |-  ( ( ( P ( ball `  D ) r ) 
C_  x  /\  x  C_  A )  ->  ( P ( ball `  D
) r )  C_  A )
32expcom 115 . . . . . . . 8  |-  ( x 
C_  A  ->  (
( P ( ball `  D ) r ) 
C_  x  ->  ( P ( ball `  D
) r )  C_  A ) )
43reximdv 2533 . . . . . . 7  |-  ( x 
C_  A  ->  ( E. r  e.  RR+  ( P ( ball `  D
) r )  C_  x  ->  E. r  e.  RR+  ( P ( ball `  D
) r )  C_  A ) )
51, 4syl5com 29 . . . . . 6  |-  ( ( D  e.  ( *Met `  X )  /\  x  e.  ran  ( ball `  D )  /\  P  e.  x
)  ->  ( x  C_  A  ->  E. r  e.  RR+  ( P (
ball `  D )
r )  C_  A
) )
653expa 1181 . . . . 5  |-  ( ( ( D  e.  ( *Met `  X
)  /\  x  e.  ran  ( ball `  D
) )  /\  P  e.  x )  ->  (
x  C_  A  ->  E. r  e.  RR+  ( P ( ball `  D
) r )  C_  A ) )
76expimpd 360 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  x  e.  ran  ( ball `  D )
)  ->  ( ( P  e.  x  /\  x  C_  A )  ->  E. r  e.  RR+  ( P ( ball `  D
) r )  C_  A ) )
87adantlr 468 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  x  e.  ran  ( ball `  D
) )  ->  (
( P  e.  x  /\  x  C_  A )  ->  E. r  e.  RR+  ( P ( ball `  D
) r )  C_  A ) )
98rexlimdva 2549 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X
)  ->  ( E. x  e.  ran  ( ball `  D ) ( P  e.  x  /\  x  C_  A )  ->  E. r  e.  RR+  ( P (
ball `  D )
r )  C_  A
) )
10 simpll 518 . . . . 5  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  (
r  e.  RR+  /\  ( P ( ball `  D
) r )  C_  A ) )  ->  D  e.  ( *Met `  X ) )
11 simplr 519 . . . . 5  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  (
r  e.  RR+  /\  ( P ( ball `  D
) r )  C_  A ) )  ->  P  e.  X )
12 rpxr 9449 . . . . . 6  |-  ( r  e.  RR+  ->  r  e. 
RR* )
1312ad2antrl 481 . . . . 5  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  (
r  e.  RR+  /\  ( P ( ball `  D
) r )  C_  A ) )  -> 
r  e.  RR* )
14 blelrn 12589 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  r  e.  RR* )  ->  ( P ( ball `  D ) r )  e.  ran  ( ball `  D ) )
1510, 11, 13, 14syl3anc 1216 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  (
r  e.  RR+  /\  ( P ( ball `  D
) r )  C_  A ) )  -> 
( P ( ball `  D ) r )  e.  ran  ( ball `  D ) )
16 simprl 520 . . . . 5  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  (
r  e.  RR+  /\  ( P ( ball `  D
) r )  C_  A ) )  -> 
r  e.  RR+ )
17 blcntr 12585 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  r  e.  RR+ )  ->  P  e.  ( P ( ball `  D
) r ) )
1810, 11, 16, 17syl3anc 1216 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  (
r  e.  RR+  /\  ( P ( ball `  D
) r )  C_  A ) )  ->  P  e.  ( P
( ball `  D )
r ) )
19 simprr 521 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  (
r  e.  RR+  /\  ( P ( ball `  D
) r )  C_  A ) )  -> 
( P ( ball `  D ) r ) 
C_  A )
20 eleq2 2203 . . . . . 6  |-  ( x  =  ( P (
ball `  D )
r )  ->  ( P  e.  x  <->  P  e.  ( P ( ball `  D
) r ) ) )
21 sseq1 3120 . . . . . 6  |-  ( x  =  ( P (
ball `  D )
r )  ->  (
x  C_  A  <->  ( P
( ball `  D )
r )  C_  A
) )
2220, 21anbi12d 464 . . . . 5  |-  ( x  =  ( P (
ball `  D )
r )  ->  (
( P  e.  x  /\  x  C_  A )  <-> 
( P  e.  ( P ( ball `  D
) r )  /\  ( P ( ball `  D
) r )  C_  A ) ) )
2322rspcev 2789 . . . 4  |-  ( ( ( P ( ball `  D ) r )  e.  ran  ( ball `  D )  /\  ( P  e.  ( P
( ball `  D )
r )  /\  ( P ( ball `  D
) r )  C_  A ) )  ->  E. x  e.  ran  ( ball `  D )
( P  e.  x  /\  x  C_  A ) )
2415, 18, 19, 23syl12anc 1214 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  (
r  e.  RR+  /\  ( P ( ball `  D
) r )  C_  A ) )  ->  E. x  e.  ran  ( ball `  D )
( P  e.  x  /\  x  C_  A ) )
2524rexlimdvaa 2550 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X
)  ->  ( E. r  e.  RR+  ( P ( ball `  D
) r )  C_  A  ->  E. x  e.  ran  ( ball `  D )
( P  e.  x  /\  x  C_  A ) ) )
269, 25impbid 128 1  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X
)  ->  ( E. x  e.  ran  ( ball `  D ) ( P  e.  x  /\  x  C_  A )  <->  E. r  e.  RR+  ( P (
ball `  D )
r )  C_  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 962    = wceq 1331    e. wcel 1480   E.wrex 2417    C_ wss 3071   ran crn 4540   ` cfv 5123  (class class class)co 5774   RR*cxr 7799   RR+crp 9441   *Metcxmet 12149   ballcbl 12151
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739
This theorem depends on definitions:  df-bi 116  df-stab 816  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-po 4218  df-iso 4219  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-map 6544  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-xneg 9559  df-xadd 9560  df-psmet 12156  df-xmet 12157  df-bl 12159
This theorem is referenced by:  blbas  12602  elmopn2  12618  mopni2  12652  metss  12663  tgioo  12715
  Copyright terms: Public domain W3C validator