ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  blssex Unicode version

Theorem blssex 12419
Description: Two ways to express the existence of a ball subset. (Contributed by NM, 5-May-2007.) (Revised by Mario Carneiro, 12-Nov-2013.)
Assertion
Ref Expression
blssex  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X
)  ->  ( E. x  e.  ran  ( ball `  D ) ( P  e.  x  /\  x  C_  A )  <->  E. r  e.  RR+  ( P (
ball `  D )
r )  C_  A
) )
Distinct variable groups:    x, r, A    D, r, x    P, r, x    X, r, x

Proof of Theorem blssex
StepHypRef Expression
1 blss 12417 . . . . . . 7  |-  ( ( D  e.  ( *Met `  X )  /\  x  e.  ran  ( ball `  D )  /\  P  e.  x
)  ->  E. r  e.  RR+  ( P (
ball `  D )
r )  C_  x
)
2 sstr 3071 . . . . . . . . 9  |-  ( ( ( P ( ball `  D ) r ) 
C_  x  /\  x  C_  A )  ->  ( P ( ball `  D
) r )  C_  A )
32expcom 115 . . . . . . . 8  |-  ( x 
C_  A  ->  (
( P ( ball `  D ) r ) 
C_  x  ->  ( P ( ball `  D
) r )  C_  A ) )
43reximdv 2507 . . . . . . 7  |-  ( x 
C_  A  ->  ( E. r  e.  RR+  ( P ( ball `  D
) r )  C_  x  ->  E. r  e.  RR+  ( P ( ball `  D
) r )  C_  A ) )
51, 4syl5com 29 . . . . . 6  |-  ( ( D  e.  ( *Met `  X )  /\  x  e.  ran  ( ball `  D )  /\  P  e.  x
)  ->  ( x  C_  A  ->  E. r  e.  RR+  ( P (
ball `  D )
r )  C_  A
) )
653expa 1164 . . . . 5  |-  ( ( ( D  e.  ( *Met `  X
)  /\  x  e.  ran  ( ball `  D
) )  /\  P  e.  x )  ->  (
x  C_  A  ->  E. r  e.  RR+  ( P ( ball `  D
) r )  C_  A ) )
76expimpd 358 . . . 4  |-  ( ( D  e.  ( *Met `  X )  /\  x  e.  ran  ( ball `  D )
)  ->  ( ( P  e.  x  /\  x  C_  A )  ->  E. r  e.  RR+  ( P ( ball `  D
) r )  C_  A ) )
87adantlr 466 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  x  e.  ran  ( ball `  D
) )  ->  (
( P  e.  x  /\  x  C_  A )  ->  E. r  e.  RR+  ( P ( ball `  D
) r )  C_  A ) )
98rexlimdva 2523 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X
)  ->  ( E. x  e.  ran  ( ball `  D ) ( P  e.  x  /\  x  C_  A )  ->  E. r  e.  RR+  ( P (
ball `  D )
r )  C_  A
) )
10 simpll 501 . . . . 5  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  (
r  e.  RR+  /\  ( P ( ball `  D
) r )  C_  A ) )  ->  D  e.  ( *Met `  X ) )
11 simplr 502 . . . . 5  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  (
r  e.  RR+  /\  ( P ( ball `  D
) r )  C_  A ) )  ->  P  e.  X )
12 rpxr 9350 . . . . . 6  |-  ( r  e.  RR+  ->  r  e. 
RR* )
1312ad2antrl 479 . . . . 5  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  (
r  e.  RR+  /\  ( P ( ball `  D
) r )  C_  A ) )  -> 
r  e.  RR* )
14 blelrn 12409 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  r  e.  RR* )  ->  ( P ( ball `  D ) r )  e.  ran  ( ball `  D ) )
1510, 11, 13, 14syl3anc 1199 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  (
r  e.  RR+  /\  ( P ( ball `  D
) r )  C_  A ) )  -> 
( P ( ball `  D ) r )  e.  ran  ( ball `  D ) )
16 simprl 503 . . . . 5  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  (
r  e.  RR+  /\  ( P ( ball `  D
) r )  C_  A ) )  -> 
r  e.  RR+ )
17 blcntr 12405 . . . . 5  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X  /\  r  e.  RR+ )  ->  P  e.  ( P ( ball `  D
) r ) )
1810, 11, 16, 17syl3anc 1199 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  (
r  e.  RR+  /\  ( P ( ball `  D
) r )  C_  A ) )  ->  P  e.  ( P
( ball `  D )
r ) )
19 simprr 504 . . . 4  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  (
r  e.  RR+  /\  ( P ( ball `  D
) r )  C_  A ) )  -> 
( P ( ball `  D ) r ) 
C_  A )
20 eleq2 2178 . . . . . 6  |-  ( x  =  ( P (
ball `  D )
r )  ->  ( P  e.  x  <->  P  e.  ( P ( ball `  D
) r ) ) )
21 sseq1 3086 . . . . . 6  |-  ( x  =  ( P (
ball `  D )
r )  ->  (
x  C_  A  <->  ( P
( ball `  D )
r )  C_  A
) )
2220, 21anbi12d 462 . . . . 5  |-  ( x  =  ( P (
ball `  D )
r )  ->  (
( P  e.  x  /\  x  C_  A )  <-> 
( P  e.  ( P ( ball `  D
) r )  /\  ( P ( ball `  D
) r )  C_  A ) ) )
2322rspcev 2760 . . . 4  |-  ( ( ( P ( ball `  D ) r )  e.  ran  ( ball `  D )  /\  ( P  e.  ( P
( ball `  D )
r )  /\  ( P ( ball `  D
) r )  C_  A ) )  ->  E. x  e.  ran  ( ball `  D )
( P  e.  x  /\  x  C_  A ) )
2415, 18, 19, 23syl12anc 1197 . . 3  |-  ( ( ( D  e.  ( *Met `  X
)  /\  P  e.  X )  /\  (
r  e.  RR+  /\  ( P ( ball `  D
) r )  C_  A ) )  ->  E. x  e.  ran  ( ball `  D )
( P  e.  x  /\  x  C_  A ) )
2524rexlimdvaa 2524 . 2  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X
)  ->  ( E. r  e.  RR+  ( P ( ball `  D
) r )  C_  A  ->  E. x  e.  ran  ( ball `  D )
( P  e.  x  /\  x  C_  A ) ) )
269, 25impbid 128 1  |-  ( ( D  e.  ( *Met `  X )  /\  P  e.  X
)  ->  ( E. x  e.  ran  ( ball `  D ) ( P  e.  x  /\  x  C_  A )  <->  E. r  e.  RR+  ( P (
ball `  D )
r )  C_  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 945    = wceq 1314    e. wcel 1463   E.wrex 2391    C_ wss 3037   ran crn 4500   ` cfv 5081  (class class class)co 5728   RR*cxr 7723   RR+crp 9343   *Metcxmet 11992   ballcbl 11994
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4006  ax-pow 4058  ax-pr 4091  ax-un 4315  ax-setind 4412  ax-cnex 7636  ax-resscn 7637  ax-1cn 7638  ax-1re 7639  ax-icn 7640  ax-addcl 7641  ax-addrcl 7642  ax-mulcl 7643  ax-mulrcl 7644  ax-addcom 7645  ax-mulcom 7646  ax-addass 7647  ax-mulass 7648  ax-distr 7649  ax-i2m1 7650  ax-0lt1 7651  ax-1rid 7652  ax-0id 7653  ax-rnegex 7654  ax-precex 7655  ax-cnre 7656  ax-pre-ltirr 7657  ax-pre-ltwlin 7658  ax-pre-lttrn 7659  ax-pre-apti 7660  ax-pre-ltadd 7661  ax-pre-mulgt0 7662  ax-pre-mulext 7663  ax-arch 7664
This theorem depends on definitions:  df-bi 116  df-stab 799  df-dc 803  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-nel 2378  df-ral 2395  df-rex 2396  df-reu 2397  df-rmo 2398  df-rab 2399  df-v 2659  df-sbc 2879  df-csb 2972  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-if 3441  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-int 3738  df-iun 3781  df-br 3896  df-opab 3950  df-mpt 3951  df-id 4175  df-po 4178  df-iso 4179  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512  df-iota 5046  df-fun 5083  df-fn 5084  df-f 5085  df-fv 5089  df-riota 5684  df-ov 5731  df-oprab 5732  df-mpo 5733  df-1st 5992  df-2nd 5993  df-map 6498  df-pnf 7726  df-mnf 7727  df-xr 7728  df-ltxr 7729  df-le 7730  df-sub 7858  df-neg 7859  df-reap 8255  df-ap 8262  df-div 8346  df-inn 8631  df-2 8689  df-n0 8882  df-z 8959  df-uz 9229  df-q 9314  df-rp 9344  df-xneg 9452  df-xadd 9453  df-psmet 11999  df-xmet 12000  df-bl 12002
This theorem is referenced by:  blbas  12422  elmopn2  12438  mopni2  12472  metss  12483  tgioo  12532
  Copyright terms: Public domain W3C validator