ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  foov Unicode version

Theorem foov 6074
Description: An onto mapping of an operation expressed in terms of operation values. (Contributed by NM, 29-Oct-2006.)
Assertion
Ref Expression
foov  |-  ( F : ( A  X.  B ) -onto-> C  <->  ( F : ( A  X.  B ) --> C  /\  A. z  e.  C  E. x  e.  A  E. y  e.  B  z  =  ( x F y ) ) )
Distinct variable groups:    x, y, z, A    x, B, y, z    z, C    x, F, y, z
Allowed substitution hints:    C( x, y)

Proof of Theorem foov
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 dffo3 5712 . 2  |-  ( F : ( A  X.  B ) -onto-> C  <->  ( F : ( A  X.  B ) --> C  /\  A. z  e.  C  E. w  e.  ( A  X.  B ) z  =  ( F `  w
) ) )
2 fveq2 5561 . . . . . . 7  |-  ( w  =  <. x ,  y
>.  ->  ( F `  w )  =  ( F `  <. x ,  y >. )
)
3 df-ov 5928 . . . . . . 7  |-  ( x F y )  =  ( F `  <. x ,  y >. )
42, 3eqtr4di 2247 . . . . . 6  |-  ( w  =  <. x ,  y
>.  ->  ( F `  w )  =  ( x F y ) )
54eqeq2d 2208 . . . . 5  |-  ( w  =  <. x ,  y
>.  ->  ( z  =  ( F `  w
)  <->  z  =  ( x F y ) ) )
65rexxp 4811 . . . 4  |-  ( E. w  e.  ( A  X.  B ) z  =  ( F `  w )  <->  E. x  e.  A  E. y  e.  B  z  =  ( x F y ) )
76ralbii 2503 . . 3  |-  ( A. z  e.  C  E. w  e.  ( A  X.  B ) z  =  ( F `  w
)  <->  A. z  e.  C  E. x  e.  A  E. y  e.  B  z  =  ( x F y ) )
87anbi2i 457 . 2  |-  ( ( F : ( A  X.  B ) --> C  /\  A. z  e.  C  E. w  e.  ( A  X.  B
) z  =  ( F `  w ) )  <->  ( F :
( A  X.  B
) --> C  /\  A. z  e.  C  E. x  e.  A  E. y  e.  B  z  =  ( x F y ) ) )
91, 8bitri 184 1  |-  ( F : ( A  X.  B ) -onto-> C  <->  ( F : ( A  X.  B ) --> C  /\  A. z  e.  C  E. x  e.  A  E. y  e.  B  z  =  ( x F y ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1364   A.wral 2475   E.wrex 2476   <.cop 3626    X. cxp 4662   -->wf 5255   -onto->wfo 5257   ` cfv 5259  (class class class)co 5925
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fo 5265  df-fv 5267  df-ov 5928
This theorem is referenced by:  xpsff1o  13051  mndpfo  13140
  Copyright terms: Public domain W3C validator