ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  foov Unicode version

Theorem foov 6116
Description: An onto mapping of an operation expressed in terms of operation values. (Contributed by NM, 29-Oct-2006.)
Assertion
Ref Expression
foov  |-  ( F : ( A  X.  B ) -onto-> C  <->  ( F : ( A  X.  B ) --> C  /\  A. z  e.  C  E. x  e.  A  E. y  e.  B  z  =  ( x F y ) ) )
Distinct variable groups:    x, y, z, A    x, B, y, z    z, C    x, F, y, z
Allowed substitution hints:    C( x, y)

Proof of Theorem foov
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 dffo3 5750 . 2  |-  ( F : ( A  X.  B ) -onto-> C  <->  ( F : ( A  X.  B ) --> C  /\  A. z  e.  C  E. w  e.  ( A  X.  B ) z  =  ( F `  w
) ) )
2 fveq2 5599 . . . . . . 7  |-  ( w  =  <. x ,  y
>.  ->  ( F `  w )  =  ( F `  <. x ,  y >. )
)
3 df-ov 5970 . . . . . . 7  |-  ( x F y )  =  ( F `  <. x ,  y >. )
42, 3eqtr4di 2258 . . . . . 6  |-  ( w  =  <. x ,  y
>.  ->  ( F `  w )  =  ( x F y ) )
54eqeq2d 2219 . . . . 5  |-  ( w  =  <. x ,  y
>.  ->  ( z  =  ( F `  w
)  <->  z  =  ( x F y ) ) )
65rexxp 4840 . . . 4  |-  ( E. w  e.  ( A  X.  B ) z  =  ( F `  w )  <->  E. x  e.  A  E. y  e.  B  z  =  ( x F y ) )
76ralbii 2514 . . 3  |-  ( A. z  e.  C  E. w  e.  ( A  X.  B ) z  =  ( F `  w
)  <->  A. z  e.  C  E. x  e.  A  E. y  e.  B  z  =  ( x F y ) )
87anbi2i 457 . 2  |-  ( ( F : ( A  X.  B ) --> C  /\  A. z  e.  C  E. w  e.  ( A  X.  B
) z  =  ( F `  w ) )  <->  ( F :
( A  X.  B
) --> C  /\  A. z  e.  C  E. x  e.  A  E. y  e.  B  z  =  ( x F y ) ) )
91, 8bitri 184 1  |-  ( F : ( A  X.  B ) -onto-> C  <->  ( F : ( A  X.  B ) --> C  /\  A. z  e.  C  E. x  e.  A  E. y  e.  B  z  =  ( x F y ) ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 104    <-> wb 105    = wceq 1373   A.wral 2486   E.wrex 2487   <.cop 3646    X. cxp 4691   -->wf 5286   -onto->wfo 5288   ` cfv 5290  (class class class)co 5967
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-csb 3102  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-fo 5296  df-fv 5298  df-ov 5970
This theorem is referenced by:  xpsff1o  13296  mndpfo  13385
  Copyright terms: Public domain W3C validator