ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  genppreclu Unicode version

Theorem genppreclu 7663
Description: Pre-closure law for general operation on upper cuts. (Contributed by Jim Kingdon, 7-Nov-2019.)
Hypotheses
Ref Expression
genpelvl.1  |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  <. { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 1st `  w )  /\  z  e.  ( 1st `  v
)  /\  x  =  ( y G z ) ) } ,  { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 2nd `  w )  /\  z  e.  ( 2nd `  v
)  /\  x  =  ( y G z ) ) } >. )
genpelvl.2  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y G z )  e.  Q. )
Assertion
Ref Expression
genppreclu  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( C  e.  ( 2nd `  A
)  /\  D  e.  ( 2nd `  B ) )  ->  ( C G D )  e.  ( 2nd `  ( A F B ) ) ) )
Distinct variable groups:    x, y, z, w, v, A    x, B, y, z, w, v   
x, G, y, z, w, v
Allowed substitution hints:    C( x, y, z, w, v)    D( x, y, z, w, v)    F( x, y, z, w, v)

Proof of Theorem genppreclu
Dummy variables  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2207 . . 3  |-  ( C G D )  =  ( C G D )
2 rspceov 6010 . . 3  |-  ( ( C  e.  ( 2nd `  A )  /\  D  e.  ( 2nd `  B
)  /\  ( C G D )  =  ( C G D ) )  ->  E. g  e.  ( 2nd `  A
) E. h  e.  ( 2nd `  B
) ( C G D )  =  ( g G h ) )
31, 2mp3an3 1339 . 2  |-  ( ( C  e.  ( 2nd `  A )  /\  D  e.  ( 2nd `  B
) )  ->  E. g  e.  ( 2nd `  A
) E. h  e.  ( 2nd `  B
) ( C G D )  =  ( g G h ) )
4 genpelvl.1 . . 3  |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  <. { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 1st `  w )  /\  z  e.  ( 1st `  v
)  /\  x  =  ( y G z ) ) } ,  { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 2nd `  w )  /\  z  e.  ( 2nd `  v
)  /\  x  =  ( y G z ) ) } >. )
5 genpelvl.2 . . 3  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y G z )  e.  Q. )
64, 5genpelvu 7661 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( C G D )  e.  ( 2nd `  ( A F B ) )  <->  E. g  e.  ( 2nd `  A ) E. h  e.  ( 2nd `  B ) ( C G D )  =  ( g G h ) ) )
73, 6imbitrrid 156 1  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( C  e.  ( 2nd `  A
)  /\  D  e.  ( 2nd `  B ) )  ->  ( C G D )  e.  ( 2nd `  ( A F B ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981    = wceq 1373    e. wcel 2178   E.wrex 2487   {crab 2490   <.cop 3646   ` cfv 5290  (class class class)co 5967    e. cmpo 5969   1stc1st 6247   2ndc2nd 6248   Q.cnq 7428   P.cnp 7439
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-qs 6649  df-ni 7452  df-nqqs 7496  df-inp 7614
This theorem is referenced by:  genpmu  7666  genprndu  7670  addnqpru  7678  mulnqpru  7717  distrlem1pru  7731  distrlem4pru  7733  ltexprlemru  7760  addcanprleml  7762  addcanprlemu  7763
  Copyright terms: Public domain W3C validator