ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  genpprecll Unicode version

Theorem genpprecll 7697
Description: Pre-closure law for general operation on lower cuts. (Contributed by Jim Kingdon, 2-Oct-2019.)
Hypotheses
Ref Expression
genpelvl.1  |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  <. { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 1st `  w )  /\  z  e.  ( 1st `  v
)  /\  x  =  ( y G z ) ) } ,  { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 2nd `  w )  /\  z  e.  ( 2nd `  v
)  /\  x  =  ( y G z ) ) } >. )
genpelvl.2  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y G z )  e.  Q. )
Assertion
Ref Expression
genpprecll  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( C  e.  ( 1st `  A
)  /\  D  e.  ( 1st `  B ) )  ->  ( C G D )  e.  ( 1st `  ( A F B ) ) ) )
Distinct variable groups:    x, y, z, w, v, A    x, B, y, z, w, v   
x, G, y, z, w, v
Allowed substitution hints:    C( x, y, z, w, v)    D( x, y, z, w, v)    F( x, y, z, w, v)

Proof of Theorem genpprecll
Dummy variables  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2229 . . 3  |-  ( C G D )  =  ( C G D )
2 rspceov 6043 . . 3  |-  ( ( C  e.  ( 1st `  A )  /\  D  e.  ( 1st `  B
)  /\  ( C G D )  =  ( C G D ) )  ->  E. g  e.  ( 1st `  A
) E. h  e.  ( 1st `  B
) ( C G D )  =  ( g G h ) )
31, 2mp3an3 1360 . 2  |-  ( ( C  e.  ( 1st `  A )  /\  D  e.  ( 1st `  B
) )  ->  E. g  e.  ( 1st `  A
) E. h  e.  ( 1st `  B
) ( C G D )  =  ( g G h ) )
4 genpelvl.1 . . 3  |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  <. { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 1st `  w )  /\  z  e.  ( 1st `  v
)  /\  x  =  ( y G z ) ) } ,  { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 2nd `  w )  /\  z  e.  ( 2nd `  v
)  /\  x  =  ( y G z ) ) } >. )
5 genpelvl.2 . . 3  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y G z )  e.  Q. )
64, 5genpelvl 7695 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( C G D )  e.  ( 1st `  ( A F B ) )  <->  E. g  e.  ( 1st `  A ) E. h  e.  ( 1st `  B ) ( C G D )  =  ( g G h ) ) )
73, 6imbitrrid 156 1  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( C  e.  ( 1st `  A
)  /\  D  e.  ( 1st `  B ) )  ->  ( C G D )  e.  ( 1st `  ( A F B ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002    = wceq 1395    e. wcel 2200   E.wrex 2509   {crab 2512   <.cop 3669   ` cfv 5317  (class class class)co 6000    e. cmpo 6002   1stc1st 6282   2ndc2nd 6283   Q.cnq 7463   P.cnp 7474
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-qs 6684  df-ni 7487  df-nqqs 7531  df-inp 7649
This theorem is referenced by:  genpml  7700  genprndl  7704  addnqprl  7712  mulnqprl  7751  distrlem1prl  7765  distrlem4prl  7767  ltaddpr  7780  ltexprlemrl  7793  addcanprleml  7797  addcanprlemu  7798
  Copyright terms: Public domain W3C validator