ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  genpprecll Unicode version

Theorem genpprecll 7516
Description: Pre-closure law for general operation on lower cuts. (Contributed by Jim Kingdon, 2-Oct-2019.)
Hypotheses
Ref Expression
genpelvl.1  |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  <. { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 1st `  w )  /\  z  e.  ( 1st `  v
)  /\  x  =  ( y G z ) ) } ,  { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 2nd `  w )  /\  z  e.  ( 2nd `  v
)  /\  x  =  ( y G z ) ) } >. )
genpelvl.2  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y G z )  e.  Q. )
Assertion
Ref Expression
genpprecll  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( C  e.  ( 1st `  A
)  /\  D  e.  ( 1st `  B ) )  ->  ( C G D )  e.  ( 1st `  ( A F B ) ) ) )
Distinct variable groups:    x, y, z, w, v, A    x, B, y, z, w, v   
x, G, y, z, w, v
Allowed substitution hints:    C( x, y, z, w, v)    D( x, y, z, w, v)    F( x, y, z, w, v)

Proof of Theorem genpprecll
Dummy variables  g  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2177 . . 3  |-  ( C G D )  =  ( C G D )
2 rspceov 5920 . . 3  |-  ( ( C  e.  ( 1st `  A )  /\  D  e.  ( 1st `  B
)  /\  ( C G D )  =  ( C G D ) )  ->  E. g  e.  ( 1st `  A
) E. h  e.  ( 1st `  B
) ( C G D )  =  ( g G h ) )
31, 2mp3an3 1326 . 2  |-  ( ( C  e.  ( 1st `  A )  /\  D  e.  ( 1st `  B
) )  ->  E. g  e.  ( 1st `  A
) E. h  e.  ( 1st `  B
) ( C G D )  =  ( g G h ) )
4 genpelvl.1 . . 3  |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  <. { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 1st `  w )  /\  z  e.  ( 1st `  v
)  /\  x  =  ( y G z ) ) } ,  { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 2nd `  w )  /\  z  e.  ( 2nd `  v
)  /\  x  =  ( y G z ) ) } >. )
5 genpelvl.2 . . 3  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y G z )  e.  Q. )
64, 5genpelvl 7514 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( C G D )  e.  ( 1st `  ( A F B ) )  <->  E. g  e.  ( 1st `  A ) E. h  e.  ( 1st `  B ) ( C G D )  =  ( g G h ) ) )
73, 6imbitrrid 156 1  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( ( C  e.  ( 1st `  A
)  /\  D  e.  ( 1st `  B ) )  ->  ( C G D )  e.  ( 1st `  ( A F B ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 978    = wceq 1353    e. wcel 2148   E.wrex 2456   {crab 2459   <.cop 3597   ` cfv 5218  (class class class)co 5878    e. cmpo 5880   1stc1st 6142   2ndc2nd 6143   Q.cnq 7282   P.cnp 7293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-id 4295  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-ov 5881  df-oprab 5882  df-mpo 5883  df-1st 6144  df-2nd 6145  df-qs 6544  df-ni 7306  df-nqqs 7350  df-inp 7468
This theorem is referenced by:  genpml  7519  genprndl  7523  addnqprl  7531  mulnqprl  7570  distrlem1prl  7584  distrlem4prl  7586  ltaddpr  7599  ltexprlemrl  7612  addcanprleml  7616  addcanprlemu  7617
  Copyright terms: Public domain W3C validator