Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elz2 | Unicode version |
Description: Membership in the set of integers. Commonly used in constructions of the integers as equivalence classes under subtraction of the positive integers. (Contributed by Mario Carneiro, 16-May-2014.) |
Ref | Expression |
---|---|
elz2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elznn0 9227 | . 2 | |
2 | nn0p1nn 9174 | . . . . . 6 | |
3 | 2 | adantl 275 | . . . . 5 |
4 | 1nn 8889 | . . . . . 6 | |
5 | 4 | a1i 9 | . . . . 5 |
6 | recn 7907 | . . . . . . . 8 | |
7 | 6 | adantr 274 | . . . . . . 7 |
8 | ax-1cn 7867 | . . . . . . 7 | |
9 | pncan 8125 | . . . . . . 7 | |
10 | 7, 8, 9 | sylancl 411 | . . . . . 6 |
11 | 10 | eqcomd 2176 | . . . . 5 |
12 | rspceov 5895 | . . . . 5 | |
13 | 3, 5, 11, 12 | syl3anc 1233 | . . . 4 |
14 | 4 | a1i 9 | . . . . 5 |
15 | 6 | adantr 274 | . . . . . . 7 |
16 | negsub 8167 | . . . . . . 7 | |
17 | 8, 15, 16 | sylancr 412 | . . . . . 6 |
18 | simpr 109 | . . . . . . 7 | |
19 | nnnn0addcl 9165 | . . . . . . 7 | |
20 | 4, 18, 19 | sylancr 412 | . . . . . 6 |
21 | 17, 20 | eqeltrrd 2248 | . . . . 5 |
22 | nncan 8148 | . . . . . . 7 | |
23 | 8, 15, 22 | sylancr 412 | . . . . . 6 |
24 | 23 | eqcomd 2176 | . . . . 5 |
25 | rspceov 5895 | . . . . 5 | |
26 | 14, 21, 24, 25 | syl3anc 1233 | . . . 4 |
27 | 13, 26 | jaodan 792 | . . 3 |
28 | nnre 8885 | . . . . . . 7 | |
29 | nnre 8885 | . . . . . . 7 | |
30 | resubcl 8183 | . . . . . . 7 | |
31 | 28, 29, 30 | syl2an 287 | . . . . . 6 |
32 | nnz 9231 | . . . . . . . 8 | |
33 | nnz 9231 | . . . . . . . 8 | |
34 | zletric 9256 | . . . . . . . 8 | |
35 | 32, 33, 34 | syl2anr 288 | . . . . . . 7 |
36 | nnnn0 9142 | . . . . . . . . 9 | |
37 | nnnn0 9142 | . . . . . . . . 9 | |
38 | nn0sub 9278 | . . . . . . . . 9 | |
39 | 36, 37, 38 | syl2anr 288 | . . . . . . . 8 |
40 | nn0sub 9278 | . . . . . . . . . 10 | |
41 | 37, 36, 40 | syl2an 287 | . . . . . . . . 9 |
42 | nncn 8886 | . . . . . . . . . . 11 | |
43 | nncn 8886 | . . . . . . . . . . 11 | |
44 | negsubdi2 8178 | . . . . . . . . . . 11 | |
45 | 42, 43, 44 | syl2an 287 | . . . . . . . . . 10 |
46 | 45 | eleq1d 2239 | . . . . . . . . 9 |
47 | 41, 46 | bitr4d 190 | . . . . . . . 8 |
48 | 39, 47 | orbi12d 788 | . . . . . . 7 |
49 | 35, 48 | mpbid 146 | . . . . . 6 |
50 | 31, 49 | jca 304 | . . . . 5 |
51 | eleq1 2233 | . . . . . 6 | |
52 | eleq1 2233 | . . . . . . 7 | |
53 | negeq 8112 | . . . . . . . 8 | |
54 | 53 | eleq1d 2239 | . . . . . . 7 |
55 | 52, 54 | orbi12d 788 | . . . . . 6 |
56 | 51, 55 | anbi12d 470 | . . . . 5 |
57 | 50, 56 | syl5ibrcom 156 | . . . 4 |
58 | 57 | rexlimivv 2593 | . . 3 |
59 | 27, 58 | impbii 125 | . 2 |
60 | 1, 59 | bitri 183 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wo 703 wceq 1348 wcel 2141 wrex 2449 class class class wbr 3989 (class class class)co 5853 cc 7772 cr 7773 c1 7775 caddc 7777 cle 7955 cmin 8090 cneg 8091 cn 8878 cn0 9135 cz 9212 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-cnex 7865 ax-resscn 7866 ax-1cn 7867 ax-1re 7868 ax-icn 7869 ax-addcl 7870 ax-addrcl 7871 ax-mulcl 7872 ax-addcom 7874 ax-addass 7876 ax-distr 7878 ax-i2m1 7879 ax-0lt1 7880 ax-0id 7882 ax-rnegex 7883 ax-cnre 7885 ax-pre-ltirr 7886 ax-pre-ltwlin 7887 ax-pre-lttrn 7888 ax-pre-ltadd 7890 |
This theorem depends on definitions: df-bi 116 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-nel 2436 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-br 3990 df-opab 4051 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-iota 5160 df-fun 5200 df-fv 5206 df-riota 5809 df-ov 5856 df-oprab 5857 df-mpo 5858 df-pnf 7956 df-mnf 7957 df-xr 7958 df-ltxr 7959 df-le 7960 df-sub 8092 df-neg 8093 df-inn 8879 df-n0 9136 df-z 9213 |
This theorem is referenced by: dfz2 9284 |
Copyright terms: Public domain | W3C validator |