ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elz2 Unicode version

Theorem elz2 9146
Description: Membership in the set of integers. Commonly used in constructions of the integers as equivalence classes under subtraction of the positive integers. (Contributed by Mario Carneiro, 16-May-2014.)
Assertion
Ref Expression
elz2  |-  ( N  e.  ZZ  <->  E. x  e.  NN  E. y  e.  NN  N  =  ( x  -  y ) )
Distinct variable group:    x, y, N

Proof of Theorem elz2
StepHypRef Expression
1 elznn0 9093 . 2  |-  ( N  e.  ZZ  <->  ( N  e.  RR  /\  ( N  e.  NN0  \/  -u N  e.  NN0 ) ) )
2 nn0p1nn 9040 . . . . . 6  |-  ( N  e.  NN0  ->  ( N  +  1 )  e.  NN )
32adantl 275 . . . . 5  |-  ( ( N  e.  RR  /\  N  e.  NN0 )  -> 
( N  +  1 )  e.  NN )
4 1nn 8755 . . . . . 6  |-  1  e.  NN
54a1i 9 . . . . 5  |-  ( ( N  e.  RR  /\  N  e.  NN0 )  -> 
1  e.  NN )
6 recn 7777 . . . . . . . 8  |-  ( N  e.  RR  ->  N  e.  CC )
76adantr 274 . . . . . . 7  |-  ( ( N  e.  RR  /\  N  e.  NN0 )  ->  N  e.  CC )
8 ax-1cn 7737 . . . . . . 7  |-  1  e.  CC
9 pncan 7992 . . . . . . 7  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  + 
1 )  -  1 )  =  N )
107, 8, 9sylancl 410 . . . . . 6  |-  ( ( N  e.  RR  /\  N  e.  NN0 )  -> 
( ( N  + 
1 )  -  1 )  =  N )
1110eqcomd 2146 . . . . 5  |-  ( ( N  e.  RR  /\  N  e.  NN0 )  ->  N  =  ( ( N  +  1 )  -  1 ) )
12 rspceov 5821 . . . . 5  |-  ( ( ( N  +  1 )  e.  NN  /\  1  e.  NN  /\  N  =  ( ( N  +  1 )  - 
1 ) )  ->  E. x  e.  NN  E. y  e.  NN  N  =  ( x  -  y ) )
133, 5, 11, 12syl3anc 1217 . . . 4  |-  ( ( N  e.  RR  /\  N  e.  NN0 )  ->  E. x  e.  NN  E. y  e.  NN  N  =  ( x  -  y ) )
144a1i 9 . . . . 5  |-  ( ( N  e.  RR  /\  -u N  e.  NN0 )  ->  1  e.  NN )
156adantr 274 . . . . . . 7  |-  ( ( N  e.  RR  /\  -u N  e.  NN0 )  ->  N  e.  CC )
16 negsub 8034 . . . . . . 7  |-  ( ( 1  e.  CC  /\  N  e.  CC )  ->  ( 1  +  -u N )  =  ( 1  -  N ) )
178, 15, 16sylancr 411 . . . . . 6  |-  ( ( N  e.  RR  /\  -u N  e.  NN0 )  ->  ( 1  +  -u N )  =  ( 1  -  N ) )
18 simpr 109 . . . . . . 7  |-  ( ( N  e.  RR  /\  -u N  e.  NN0 )  -> 
-u N  e.  NN0 )
19 nnnn0addcl 9031 . . . . . . 7  |-  ( ( 1  e.  NN  /\  -u N  e.  NN0 )  ->  ( 1  +  -u N )  e.  NN )
204, 18, 19sylancr 411 . . . . . 6  |-  ( ( N  e.  RR  /\  -u N  e.  NN0 )  ->  ( 1  +  -u N )  e.  NN )
2117, 20eqeltrrd 2218 . . . . 5  |-  ( ( N  e.  RR  /\  -u N  e.  NN0 )  ->  ( 1  -  N
)  e.  NN )
22 nncan 8015 . . . . . . 7  |-  ( ( 1  e.  CC  /\  N  e.  CC )  ->  ( 1  -  (
1  -  N ) )  =  N )
238, 15, 22sylancr 411 . . . . . 6  |-  ( ( N  e.  RR  /\  -u N  e.  NN0 )  ->  ( 1  -  (
1  -  N ) )  =  N )
2423eqcomd 2146 . . . . 5  |-  ( ( N  e.  RR  /\  -u N  e.  NN0 )  ->  N  =  ( 1  -  ( 1  -  N ) ) )
25 rspceov 5821 . . . . 5  |-  ( ( 1  e.  NN  /\  ( 1  -  N
)  e.  NN  /\  N  =  ( 1  -  ( 1  -  N ) ) )  ->  E. x  e.  NN  E. y  e.  NN  N  =  ( x  -  y ) )
2614, 21, 24, 25syl3anc 1217 . . . 4  |-  ( ( N  e.  RR  /\  -u N  e.  NN0 )  ->  E. x  e.  NN  E. y  e.  NN  N  =  ( x  -  y ) )
2713, 26jaodan 787 . . 3  |-  ( ( N  e.  RR  /\  ( N  e.  NN0  \/  -u N  e.  NN0 ) )  ->  E. x  e.  NN  E. y  e.  NN  N  =  ( x  -  y ) )
28 nnre 8751 . . . . . . 7  |-  ( x  e.  NN  ->  x  e.  RR )
29 nnre 8751 . . . . . . 7  |-  ( y  e.  NN  ->  y  e.  RR )
30 resubcl 8050 . . . . . . 7  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( x  -  y
)  e.  RR )
3128, 29, 30syl2an 287 . . . . . 6  |-  ( ( x  e.  NN  /\  y  e.  NN )  ->  ( x  -  y
)  e.  RR )
32 nnz 9097 . . . . . . . 8  |-  ( y  e.  NN  ->  y  e.  ZZ )
33 nnz 9097 . . . . . . . 8  |-  ( x  e.  NN  ->  x  e.  ZZ )
34 zletric 9122 . . . . . . . 8  |-  ( ( y  e.  ZZ  /\  x  e.  ZZ )  ->  ( y  <_  x  \/  x  <_  y ) )
3532, 33, 34syl2anr 288 . . . . . . 7  |-  ( ( x  e.  NN  /\  y  e.  NN )  ->  ( y  <_  x  \/  x  <_  y ) )
36 nnnn0 9008 . . . . . . . . 9  |-  ( y  e.  NN  ->  y  e.  NN0 )
37 nnnn0 9008 . . . . . . . . 9  |-  ( x  e.  NN  ->  x  e.  NN0 )
38 nn0sub 9144 . . . . . . . . 9  |-  ( ( y  e.  NN0  /\  x  e.  NN0 )  -> 
( y  <_  x  <->  ( x  -  y )  e.  NN0 ) )
3936, 37, 38syl2anr 288 . . . . . . . 8  |-  ( ( x  e.  NN  /\  y  e.  NN )  ->  ( y  <_  x  <->  ( x  -  y )  e.  NN0 ) )
40 nn0sub 9144 . . . . . . . . . 10  |-  ( ( x  e.  NN0  /\  y  e.  NN0 )  -> 
( x  <_  y  <->  ( y  -  x )  e.  NN0 ) )
4137, 36, 40syl2an 287 . . . . . . . . 9  |-  ( ( x  e.  NN  /\  y  e.  NN )  ->  ( x  <_  y  <->  ( y  -  x )  e.  NN0 ) )
42 nncn 8752 . . . . . . . . . . 11  |-  ( x  e.  NN  ->  x  e.  CC )
43 nncn 8752 . . . . . . . . . . 11  |-  ( y  e.  NN  ->  y  e.  CC )
44 negsubdi2 8045 . . . . . . . . . . 11  |-  ( ( x  e.  CC  /\  y  e.  CC )  -> 
-u ( x  -  y )  =  ( y  -  x ) )
4542, 43, 44syl2an 287 . . . . . . . . . 10  |-  ( ( x  e.  NN  /\  y  e.  NN )  -> 
-u ( x  -  y )  =  ( y  -  x ) )
4645eleq1d 2209 . . . . . . . . 9  |-  ( ( x  e.  NN  /\  y  e.  NN )  ->  ( -u ( x  -  y )  e. 
NN0 
<->  ( y  -  x
)  e.  NN0 )
)
4741, 46bitr4d 190 . . . . . . . 8  |-  ( ( x  e.  NN  /\  y  e.  NN )  ->  ( x  <_  y  <->  -u ( x  -  y
)  e.  NN0 )
)
4839, 47orbi12d 783 . . . . . . 7  |-  ( ( x  e.  NN  /\  y  e.  NN )  ->  ( ( y  <_  x  \/  x  <_  y )  <->  ( ( x  -  y )  e. 
NN0  \/  -u ( x  -  y )  e. 
NN0 ) ) )
4935, 48mpbid 146 . . . . . 6  |-  ( ( x  e.  NN  /\  y  e.  NN )  ->  ( ( x  -  y )  e.  NN0  \/  -u ( x  -  y
)  e.  NN0 )
)
5031, 49jca 304 . . . . 5  |-  ( ( x  e.  NN  /\  y  e.  NN )  ->  ( ( x  -  y )  e.  RR  /\  ( ( x  -  y )  e.  NN0  \/  -u ( x  -  y
)  e.  NN0 )
) )
51 eleq1 2203 . . . . . 6  |-  ( N  =  ( x  -  y )  ->  ( N  e.  RR  <->  ( x  -  y )  e.  RR ) )
52 eleq1 2203 . . . . . . 7  |-  ( N  =  ( x  -  y )  ->  ( N  e.  NN0  <->  ( x  -  y )  e. 
NN0 ) )
53 negeq 7979 . . . . . . . 8  |-  ( N  =  ( x  -  y )  ->  -u N  =  -u ( x  -  y ) )
5453eleq1d 2209 . . . . . . 7  |-  ( N  =  ( x  -  y )  ->  ( -u N  e.  NN0  <->  -u ( x  -  y )  e. 
NN0 ) )
5552, 54orbi12d 783 . . . . . 6  |-  ( N  =  ( x  -  y )  ->  (
( N  e.  NN0  \/  -u N  e.  NN0 ) 
<->  ( ( x  -  y )  e.  NN0  \/  -u ( x  -  y
)  e.  NN0 )
) )
5651, 55anbi12d 465 . . . . 5  |-  ( N  =  ( x  -  y )  ->  (
( N  e.  RR  /\  ( N  e.  NN0  \/  -u N  e.  NN0 ) )  <->  ( (
x  -  y )  e.  RR  /\  (
( x  -  y
)  e.  NN0  \/  -u ( x  -  y
)  e.  NN0 )
) ) )
5750, 56syl5ibrcom 156 . . . 4  |-  ( ( x  e.  NN  /\  y  e.  NN )  ->  ( N  =  ( x  -  y )  ->  ( N  e.  RR  /\  ( N  e.  NN0  \/  -u N  e.  NN0 ) ) ) )
5857rexlimivv 2558 . . 3  |-  ( E. x  e.  NN  E. y  e.  NN  N  =  ( x  -  y )  ->  ( N  e.  RR  /\  ( N  e.  NN0  \/  -u N  e.  NN0 ) ) )
5927, 58impbii 125 . 2  |-  ( ( N  e.  RR  /\  ( N  e.  NN0  \/  -u N  e.  NN0 ) )  <->  E. x  e.  NN  E. y  e.  NN  N  =  ( x  -  y ) )
601, 59bitri 183 1  |-  ( N  e.  ZZ  <->  E. x  e.  NN  E. y  e.  NN  N  =  ( x  -  y ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    \/ wo 698    = wceq 1332    e. wcel 1481   E.wrex 2418   class class class wbr 3937  (class class class)co 5782   CCcc 7642   RRcr 7643   1c1 7645    + caddc 7647    <_ cle 7825    - cmin 7957   -ucneg 7958   NNcn 8744   NN0cn0 9001   ZZcz 9078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363  ax-setind 4460  ax-cnex 7735  ax-resscn 7736  ax-1cn 7737  ax-1re 7738  ax-icn 7739  ax-addcl 7740  ax-addrcl 7741  ax-mulcl 7742  ax-addcom 7744  ax-addass 7746  ax-distr 7748  ax-i2m1 7749  ax-0lt1 7750  ax-0id 7752  ax-rnegex 7753  ax-cnre 7755  ax-pre-ltirr 7756  ax-pre-ltwlin 7757  ax-pre-lttrn 7758  ax-pre-ltadd 7760
This theorem depends on definitions:  df-bi 116  df-3or 964  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-nel 2405  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-dif 3078  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-int 3780  df-br 3938  df-opab 3998  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-iota 5096  df-fun 5133  df-fv 5139  df-riota 5738  df-ov 5785  df-oprab 5786  df-mpo 5787  df-pnf 7826  df-mnf 7827  df-xr 7828  df-ltxr 7829  df-le 7830  df-sub 7959  df-neg 7960  df-inn 8745  df-n0 9002  df-z 9079
This theorem is referenced by:  dfz2  9147
  Copyright terms: Public domain W3C validator