ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  elz2 Unicode version

Theorem elz2 8879
Description: Membership in the set of integers. Commonly used in constructions of the integers as equivalence classes under subtraction of the positive integers. (Contributed by Mario Carneiro, 16-May-2014.)
Assertion
Ref Expression
elz2  |-  ( N  e.  ZZ  <->  E. x  e.  NN  E. y  e.  NN  N  =  ( x  -  y ) )
Distinct variable group:    x, y, N

Proof of Theorem elz2
StepHypRef Expression
1 elznn0 8826 . 2  |-  ( N  e.  ZZ  <->  ( N  e.  RR  /\  ( N  e.  NN0  \/  -u N  e.  NN0 ) ) )
2 nn0p1nn 8773 . . . . . 6  |-  ( N  e.  NN0  ->  ( N  +  1 )  e.  NN )
32adantl 272 . . . . 5  |-  ( ( N  e.  RR  /\  N  e.  NN0 )  -> 
( N  +  1 )  e.  NN )
4 1nn 8494 . . . . . 6  |-  1  e.  NN
54a1i 9 . . . . 5  |-  ( ( N  e.  RR  /\  N  e.  NN0 )  -> 
1  e.  NN )
6 recn 7536 . . . . . . . 8  |-  ( N  e.  RR  ->  N  e.  CC )
76adantr 271 . . . . . . 7  |-  ( ( N  e.  RR  /\  N  e.  NN0 )  ->  N  e.  CC )
8 ax-1cn 7499 . . . . . . 7  |-  1  e.  CC
9 pncan 7749 . . . . . . 7  |-  ( ( N  e.  CC  /\  1  e.  CC )  ->  ( ( N  + 
1 )  -  1 )  =  N )
107, 8, 9sylancl 405 . . . . . 6  |-  ( ( N  e.  RR  /\  N  e.  NN0 )  -> 
( ( N  + 
1 )  -  1 )  =  N )
1110eqcomd 2094 . . . . 5  |-  ( ( N  e.  RR  /\  N  e.  NN0 )  ->  N  =  ( ( N  +  1 )  -  1 ) )
12 rspceov 5705 . . . . 5  |-  ( ( ( N  +  1 )  e.  NN  /\  1  e.  NN  /\  N  =  ( ( N  +  1 )  - 
1 ) )  ->  E. x  e.  NN  E. y  e.  NN  N  =  ( x  -  y ) )
133, 5, 11, 12syl3anc 1175 . . . 4  |-  ( ( N  e.  RR  /\  N  e.  NN0 )  ->  E. x  e.  NN  E. y  e.  NN  N  =  ( x  -  y ) )
144a1i 9 . . . . 5  |-  ( ( N  e.  RR  /\  -u N  e.  NN0 )  ->  1  e.  NN )
156adantr 271 . . . . . . 7  |-  ( ( N  e.  RR  /\  -u N  e.  NN0 )  ->  N  e.  CC )
16 negsub 7791 . . . . . . 7  |-  ( ( 1  e.  CC  /\  N  e.  CC )  ->  ( 1  +  -u N )  =  ( 1  -  N ) )
178, 15, 16sylancr 406 . . . . . 6  |-  ( ( N  e.  RR  /\  -u N  e.  NN0 )  ->  ( 1  +  -u N )  =  ( 1  -  N ) )
18 simpr 109 . . . . . . 7  |-  ( ( N  e.  RR  /\  -u N  e.  NN0 )  -> 
-u N  e.  NN0 )
19 nnnn0addcl 8764 . . . . . . 7  |-  ( ( 1  e.  NN  /\  -u N  e.  NN0 )  ->  ( 1  +  -u N )  e.  NN )
204, 18, 19sylancr 406 . . . . . 6  |-  ( ( N  e.  RR  /\  -u N  e.  NN0 )  ->  ( 1  +  -u N )  e.  NN )
2117, 20eqeltrrd 2166 . . . . 5  |-  ( ( N  e.  RR  /\  -u N  e.  NN0 )  ->  ( 1  -  N
)  e.  NN )
22 nncan 7772 . . . . . . 7  |-  ( ( 1  e.  CC  /\  N  e.  CC )  ->  ( 1  -  (
1  -  N ) )  =  N )
238, 15, 22sylancr 406 . . . . . 6  |-  ( ( N  e.  RR  /\  -u N  e.  NN0 )  ->  ( 1  -  (
1  -  N ) )  =  N )
2423eqcomd 2094 . . . . 5  |-  ( ( N  e.  RR  /\  -u N  e.  NN0 )  ->  N  =  ( 1  -  ( 1  -  N ) ) )
25 rspceov 5705 . . . . 5  |-  ( ( 1  e.  NN  /\  ( 1  -  N
)  e.  NN  /\  N  =  ( 1  -  ( 1  -  N ) ) )  ->  E. x  e.  NN  E. y  e.  NN  N  =  ( x  -  y ) )
2614, 21, 24, 25syl3anc 1175 . . . 4  |-  ( ( N  e.  RR  /\  -u N  e.  NN0 )  ->  E. x  e.  NN  E. y  e.  NN  N  =  ( x  -  y ) )
2713, 26jaodan 747 . . 3  |-  ( ( N  e.  RR  /\  ( N  e.  NN0  \/  -u N  e.  NN0 ) )  ->  E. x  e.  NN  E. y  e.  NN  N  =  ( x  -  y ) )
28 nnre 8490 . . . . . . 7  |-  ( x  e.  NN  ->  x  e.  RR )
29 nnre 8490 . . . . . . 7  |-  ( y  e.  NN  ->  y  e.  RR )
30 resubcl 7807 . . . . . . 7  |-  ( ( x  e.  RR  /\  y  e.  RR )  ->  ( x  -  y
)  e.  RR )
3128, 29, 30syl2an 284 . . . . . 6  |-  ( ( x  e.  NN  /\  y  e.  NN )  ->  ( x  -  y
)  e.  RR )
32 nnz 8830 . . . . . . . 8  |-  ( y  e.  NN  ->  y  e.  ZZ )
33 nnz 8830 . . . . . . . 8  |-  ( x  e.  NN  ->  x  e.  ZZ )
34 zletric 8855 . . . . . . . 8  |-  ( ( y  e.  ZZ  /\  x  e.  ZZ )  ->  ( y  <_  x  \/  x  <_  y ) )
3532, 33, 34syl2anr 285 . . . . . . 7  |-  ( ( x  e.  NN  /\  y  e.  NN )  ->  ( y  <_  x  \/  x  <_  y ) )
36 nnnn0 8741 . . . . . . . . 9  |-  ( y  e.  NN  ->  y  e.  NN0 )
37 nnnn0 8741 . . . . . . . . 9  |-  ( x  e.  NN  ->  x  e.  NN0 )
38 nn0sub 8877 . . . . . . . . 9  |-  ( ( y  e.  NN0  /\  x  e.  NN0 )  -> 
( y  <_  x  <->  ( x  -  y )  e.  NN0 ) )
3936, 37, 38syl2anr 285 . . . . . . . 8  |-  ( ( x  e.  NN  /\  y  e.  NN )  ->  ( y  <_  x  <->  ( x  -  y )  e.  NN0 ) )
40 nn0sub 8877 . . . . . . . . . 10  |-  ( ( x  e.  NN0  /\  y  e.  NN0 )  -> 
( x  <_  y  <->  ( y  -  x )  e.  NN0 ) )
4137, 36, 40syl2an 284 . . . . . . . . 9  |-  ( ( x  e.  NN  /\  y  e.  NN )  ->  ( x  <_  y  <->  ( y  -  x )  e.  NN0 ) )
42 nncn 8491 . . . . . . . . . . 11  |-  ( x  e.  NN  ->  x  e.  CC )
43 nncn 8491 . . . . . . . . . . 11  |-  ( y  e.  NN  ->  y  e.  CC )
44 negsubdi2 7802 . . . . . . . . . . 11  |-  ( ( x  e.  CC  /\  y  e.  CC )  -> 
-u ( x  -  y )  =  ( y  -  x ) )
4542, 43, 44syl2an 284 . . . . . . . . . 10  |-  ( ( x  e.  NN  /\  y  e.  NN )  -> 
-u ( x  -  y )  =  ( y  -  x ) )
4645eleq1d 2157 . . . . . . . . 9  |-  ( ( x  e.  NN  /\  y  e.  NN )  ->  ( -u ( x  -  y )  e. 
NN0 
<->  ( y  -  x
)  e.  NN0 )
)
4741, 46bitr4d 190 . . . . . . . 8  |-  ( ( x  e.  NN  /\  y  e.  NN )  ->  ( x  <_  y  <->  -u ( x  -  y
)  e.  NN0 )
)
4839, 47orbi12d 743 . . . . . . 7  |-  ( ( x  e.  NN  /\  y  e.  NN )  ->  ( ( y  <_  x  \/  x  <_  y )  <->  ( ( x  -  y )  e. 
NN0  \/  -u ( x  -  y )  e. 
NN0 ) ) )
4935, 48mpbid 146 . . . . . 6  |-  ( ( x  e.  NN  /\  y  e.  NN )  ->  ( ( x  -  y )  e.  NN0  \/  -u ( x  -  y
)  e.  NN0 )
)
5031, 49jca 301 . . . . 5  |-  ( ( x  e.  NN  /\  y  e.  NN )  ->  ( ( x  -  y )  e.  RR  /\  ( ( x  -  y )  e.  NN0  \/  -u ( x  -  y
)  e.  NN0 )
) )
51 eleq1 2151 . . . . . 6  |-  ( N  =  ( x  -  y )  ->  ( N  e.  RR  <->  ( x  -  y )  e.  RR ) )
52 eleq1 2151 . . . . . . 7  |-  ( N  =  ( x  -  y )  ->  ( N  e.  NN0  <->  ( x  -  y )  e. 
NN0 ) )
53 negeq 7736 . . . . . . . 8  |-  ( N  =  ( x  -  y )  ->  -u N  =  -u ( x  -  y ) )
5453eleq1d 2157 . . . . . . 7  |-  ( N  =  ( x  -  y )  ->  ( -u N  e.  NN0  <->  -u ( x  -  y )  e. 
NN0 ) )
5552, 54orbi12d 743 . . . . . 6  |-  ( N  =  ( x  -  y )  ->  (
( N  e.  NN0  \/  -u N  e.  NN0 ) 
<->  ( ( x  -  y )  e.  NN0  \/  -u ( x  -  y
)  e.  NN0 )
) )
5651, 55anbi12d 458 . . . . 5  |-  ( N  =  ( x  -  y )  ->  (
( N  e.  RR  /\  ( N  e.  NN0  \/  -u N  e.  NN0 ) )  <->  ( (
x  -  y )  e.  RR  /\  (
( x  -  y
)  e.  NN0  \/  -u ( x  -  y
)  e.  NN0 )
) ) )
5750, 56syl5ibrcom 156 . . . 4  |-  ( ( x  e.  NN  /\  y  e.  NN )  ->  ( N  =  ( x  -  y )  ->  ( N  e.  RR  /\  ( N  e.  NN0  \/  -u N  e.  NN0 ) ) ) )
5857rexlimivv 2495 . . 3  |-  ( E. x  e.  NN  E. y  e.  NN  N  =  ( x  -  y )  ->  ( N  e.  RR  /\  ( N  e.  NN0  \/  -u N  e.  NN0 ) ) )
5927, 58impbii 125 . 2  |-  ( ( N  e.  RR  /\  ( N  e.  NN0  \/  -u N  e.  NN0 ) )  <->  E. x  e.  NN  E. y  e.  NN  N  =  ( x  -  y ) )
601, 59bitri 183 1  |-  ( N  e.  ZZ  <->  E. x  e.  NN  E. y  e.  NN  N  =  ( x  -  y ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 103    <-> wb 104    \/ wo 665    = wceq 1290    e. wcel 1439   E.wrex 2361   class class class wbr 3851  (class class class)co 5666   CCcc 7409   RRcr 7410   1c1 7412    + caddc 7414    <_ cle 7584    - cmin 7714   -ucneg 7715   NNcn 8483   NN0cn0 8734   ZZcz 8811
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-13 1450  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3963  ax-pow 4015  ax-pr 4045  ax-un 4269  ax-setind 4366  ax-cnex 7497  ax-resscn 7498  ax-1cn 7499  ax-1re 7500  ax-icn 7501  ax-addcl 7502  ax-addrcl 7503  ax-mulcl 7504  ax-addcom 7506  ax-addass 7508  ax-distr 7510  ax-i2m1 7511  ax-0lt1 7512  ax-0id 7514  ax-rnegex 7515  ax-cnre 7517  ax-pre-ltirr 7518  ax-pre-ltwlin 7519  ax-pre-lttrn 7520  ax-pre-ltadd 7522
This theorem depends on definitions:  df-bi 116  df-3or 926  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-nel 2352  df-ral 2365  df-rex 2366  df-reu 2367  df-rab 2369  df-v 2622  df-sbc 2842  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-int 3695  df-br 3852  df-opab 3906  df-id 4129  df-xp 4458  df-rel 4459  df-cnv 4460  df-co 4461  df-dm 4462  df-iota 4993  df-fun 5030  df-fv 5036  df-riota 5622  df-ov 5669  df-oprab 5670  df-mpt2 5671  df-pnf 7585  df-mnf 7586  df-xr 7587  df-ltxr 7588  df-le 7589  df-sub 7716  df-neg 7717  df-inn 8484  df-n0 8735  df-z 8812
This theorem is referenced by:  dfz2  8880
  Copyright terms: Public domain W3C validator