Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > elz2 | Unicode version |
Description: Membership in the set of integers. Commonly used in constructions of the integers as equivalence classes under subtraction of the positive integers. (Contributed by Mario Carneiro, 16-May-2014.) |
Ref | Expression |
---|---|
elz2 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elznn0 9206 | . 2 | |
2 | nn0p1nn 9153 | . . . . . 6 | |
3 | 2 | adantl 275 | . . . . 5 |
4 | 1nn 8868 | . . . . . 6 | |
5 | 4 | a1i 9 | . . . . 5 |
6 | recn 7886 | . . . . . . . 8 | |
7 | 6 | adantr 274 | . . . . . . 7 |
8 | ax-1cn 7846 | . . . . . . 7 | |
9 | pncan 8104 | . . . . . . 7 | |
10 | 7, 8, 9 | sylancl 410 | . . . . . 6 |
11 | 10 | eqcomd 2171 | . . . . 5 |
12 | rspceov 5884 | . . . . 5 | |
13 | 3, 5, 11, 12 | syl3anc 1228 | . . . 4 |
14 | 4 | a1i 9 | . . . . 5 |
15 | 6 | adantr 274 | . . . . . . 7 |
16 | negsub 8146 | . . . . . . 7 | |
17 | 8, 15, 16 | sylancr 411 | . . . . . 6 |
18 | simpr 109 | . . . . . . 7 | |
19 | nnnn0addcl 9144 | . . . . . . 7 | |
20 | 4, 18, 19 | sylancr 411 | . . . . . 6 |
21 | 17, 20 | eqeltrrd 2244 | . . . . 5 |
22 | nncan 8127 | . . . . . . 7 | |
23 | 8, 15, 22 | sylancr 411 | . . . . . 6 |
24 | 23 | eqcomd 2171 | . . . . 5 |
25 | rspceov 5884 | . . . . 5 | |
26 | 14, 21, 24, 25 | syl3anc 1228 | . . . 4 |
27 | 13, 26 | jaodan 787 | . . 3 |
28 | nnre 8864 | . . . . . . 7 | |
29 | nnre 8864 | . . . . . . 7 | |
30 | resubcl 8162 | . . . . . . 7 | |
31 | 28, 29, 30 | syl2an 287 | . . . . . 6 |
32 | nnz 9210 | . . . . . . . 8 | |
33 | nnz 9210 | . . . . . . . 8 | |
34 | zletric 9235 | . . . . . . . 8 | |
35 | 32, 33, 34 | syl2anr 288 | . . . . . . 7 |
36 | nnnn0 9121 | . . . . . . . . 9 | |
37 | nnnn0 9121 | . . . . . . . . 9 | |
38 | nn0sub 9257 | . . . . . . . . 9 | |
39 | 36, 37, 38 | syl2anr 288 | . . . . . . . 8 |
40 | nn0sub 9257 | . . . . . . . . . 10 | |
41 | 37, 36, 40 | syl2an 287 | . . . . . . . . 9 |
42 | nncn 8865 | . . . . . . . . . . 11 | |
43 | nncn 8865 | . . . . . . . . . . 11 | |
44 | negsubdi2 8157 | . . . . . . . . . . 11 | |
45 | 42, 43, 44 | syl2an 287 | . . . . . . . . . 10 |
46 | 45 | eleq1d 2235 | . . . . . . . . 9 |
47 | 41, 46 | bitr4d 190 | . . . . . . . 8 |
48 | 39, 47 | orbi12d 783 | . . . . . . 7 |
49 | 35, 48 | mpbid 146 | . . . . . 6 |
50 | 31, 49 | jca 304 | . . . . 5 |
51 | eleq1 2229 | . . . . . 6 | |
52 | eleq1 2229 | . . . . . . 7 | |
53 | negeq 8091 | . . . . . . . 8 | |
54 | 53 | eleq1d 2235 | . . . . . . 7 |
55 | 52, 54 | orbi12d 783 | . . . . . 6 |
56 | 51, 55 | anbi12d 465 | . . . . 5 |
57 | 50, 56 | syl5ibrcom 156 | . . . 4 |
58 | 57 | rexlimivv 2589 | . . 3 |
59 | 27, 58 | impbii 125 | . 2 |
60 | 1, 59 | bitri 183 | 1 |
Colors of variables: wff set class |
Syntax hints: wa 103 wb 104 wo 698 wceq 1343 wcel 2136 wrex 2445 class class class wbr 3982 (class class class)co 5842 cc 7751 cr 7752 c1 7754 caddc 7756 cle 7934 cmin 8069 cneg 8070 cn 8857 cn0 9114 cz 9191 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-addass 7855 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-br 3983 df-opab 4044 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-iota 5153 df-fun 5190 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-inn 8858 df-n0 9115 df-z 9192 |
This theorem is referenced by: dfz2 9263 |
Copyright terms: Public domain | W3C validator |