ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mndpfo Unicode version

Theorem mndpfo 13019
Description: The addition operation of a monoid as a function is an onto function. (Contributed by FL, 2-Nov-2009.) (Revised by Mario Carneiro, 11-Oct-2013.) (Revised by AV, 23-Jan-2020.)
Hypotheses
Ref Expression
mndpf.b  |-  B  =  ( Base `  G
)
mndpf.p  |-  .+^  =  ( +f `  G
)
Assertion
Ref Expression
mndpfo  |-  ( G  e.  Mnd  ->  .+^  : ( B  X.  B )
-onto-> B )

Proof of Theorem mndpfo
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mndpf.b . . 3  |-  B  =  ( Base `  G
)
2 mndpf.p . . 3  |-  .+^  =  ( +f `  G
)
31, 2mndplusf 13014 . 2  |-  ( G  e.  Mnd  ->  .+^  : ( B  X.  B ) --> B )
4 simpr 110 . . . . 5  |-  ( ( G  e.  Mnd  /\  x  e.  B )  ->  x  e.  B )
5 eqid 2193 . . . . . . 7  |-  ( 0g
`  G )  =  ( 0g `  G
)
61, 5mndidcl 13011 . . . . . 6  |-  ( G  e.  Mnd  ->  ( 0g `  G )  e.  B )
76adantr 276 . . . . 5  |-  ( ( G  e.  Mnd  /\  x  e.  B )  ->  ( 0g `  G
)  e.  B )
8 eqid 2193 . . . . . . 7  |-  ( +g  `  G )  =  ( +g  `  G )
91, 8, 5mndrid 13017 . . . . . 6  |-  ( ( G  e.  Mnd  /\  x  e.  B )  ->  ( x ( +g  `  G ) ( 0g
`  G ) )  =  x )
109eqcomd 2199 . . . . 5  |-  ( ( G  e.  Mnd  /\  x  e.  B )  ->  x  =  ( x ( +g  `  G
) ( 0g `  G ) ) )
11 rspceov 5960 . . . . 5  |-  ( ( x  e.  B  /\  ( 0g `  G )  e.  B  /\  x  =  ( x ( +g  `  G ) ( 0g `  G
) ) )  ->  E. y  e.  B  E. z  e.  B  x  =  ( y
( +g  `  G ) z ) )
124, 7, 10, 11syl3anc 1249 . . . 4  |-  ( ( G  e.  Mnd  /\  x  e.  B )  ->  E. y  e.  B  E. z  e.  B  x  =  ( y
( +g  `  G ) z ) )
131, 8, 2plusfvalg 12946 . . . . . . . . 9  |-  ( ( G  e.  Mnd  /\  y  e.  B  /\  z  e.  B )  ->  ( y  .+^  z )  =  ( y ( +g  `  G ) z ) )
1413eqeq2d 2205 . . . . . . . 8  |-  ( ( G  e.  Mnd  /\  y  e.  B  /\  z  e.  B )  ->  ( x  =  ( y  .+^  z )  <->  x  =  ( y ( +g  `  G ) z ) ) )
15143expa 1205 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  y  e.  B )  /\  z  e.  B
)  ->  ( x  =  ( y  .+^  z )  <->  x  =  ( y ( +g  `  G ) z ) ) )
1615rexbidva 2491 . . . . . 6  |-  ( ( G  e.  Mnd  /\  y  e.  B )  ->  ( E. z  e.  B  x  =  ( y  .+^  z )  <->  E. z  e.  B  x  =  ( y ( +g  `  G ) z ) ) )
1716rexbidva 2491 . . . . 5  |-  ( G  e.  Mnd  ->  ( E. y  e.  B  E. z  e.  B  x  =  ( y  .+^  z )  <->  E. y  e.  B  E. z  e.  B  x  =  ( y ( +g  `  G ) z ) ) )
1817adantr 276 . . . 4  |-  ( ( G  e.  Mnd  /\  x  e.  B )  ->  ( E. y  e.  B  E. z  e.  B  x  =  ( y  .+^  z )  <->  E. y  e.  B  E. z  e.  B  x  =  ( y ( +g  `  G ) z ) ) )
1912, 18mpbird 167 . . 3  |-  ( ( G  e.  Mnd  /\  x  e.  B )  ->  E. y  e.  B  E. z  e.  B  x  =  ( y  .+^  z ) )
2019ralrimiva 2567 . 2  |-  ( G  e.  Mnd  ->  A. x  e.  B  E. y  e.  B  E. z  e.  B  x  =  ( y  .+^  z ) )
21 foov 6065 . 2  |-  (  .+^  : ( B  X.  B
) -onto-> B  <->  (  .+^  : ( B  X.  B ) --> B  /\  A. x  e.  B  E. y  e.  B  E. z  e.  B  x  =  ( y  .+^  z ) ) )
223, 20, 21sylanbrc 417 1  |-  ( G  e.  Mnd  ->  .+^  : ( B  X.  B )
-onto-> B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2164   A.wral 2472   E.wrex 2473    X. cxp 4657   -->wf 5250   -onto->wfo 5252   ` cfv 5254  (class class class)co 5918   Basecbs 12618   +g cplusg 12695   0gc0g 12867   +fcplusf 12936   Mndcmnd 12997
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-cnex 7963  ax-resscn 7964  ax-1re 7966  ax-addrcl 7969
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-inn 8983  df-2 9041  df-ndx 12621  df-slot 12622  df-base 12624  df-plusg 12708  df-0g 12869  df-plusf 12938  df-mgm 12939  df-sgrp 12985  df-mnd 12998
This theorem is referenced by:  mndfo  13020  grpplusfo  13088
  Copyright terms: Public domain W3C validator