ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  mndpfo Unicode version

Theorem mndpfo 12833
Description: The addition operation of a monoid as a function is an onto function. (Contributed by FL, 2-Nov-2009.) (Revised by Mario Carneiro, 11-Oct-2013.) (Revised by AV, 23-Jan-2020.)
Hypotheses
Ref Expression
mndpf.b  |-  B  =  ( Base `  G
)
mndpf.p  |-  .+^  =  ( +f `  G
)
Assertion
Ref Expression
mndpfo  |-  ( G  e.  Mnd  ->  .+^  : ( B  X.  B )
-onto-> B )

Proof of Theorem mndpfo
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mndpf.b . . 3  |-  B  =  ( Base `  G
)
2 mndpf.p . . 3  |-  .+^  =  ( +f `  G
)
31, 2mndplusf 12828 . 2  |-  ( G  e.  Mnd  ->  .+^  : ( B  X.  B ) --> B )
4 simpr 110 . . . . 5  |-  ( ( G  e.  Mnd  /\  x  e.  B )  ->  x  e.  B )
5 eqid 2177 . . . . . . 7  |-  ( 0g
`  G )  =  ( 0g `  G
)
61, 5mndidcl 12825 . . . . . 6  |-  ( G  e.  Mnd  ->  ( 0g `  G )  e.  B )
76adantr 276 . . . . 5  |-  ( ( G  e.  Mnd  /\  x  e.  B )  ->  ( 0g `  G
)  e.  B )
8 eqid 2177 . . . . . . 7  |-  ( +g  `  G )  =  ( +g  `  G )
91, 8, 5mndrid 12831 . . . . . 6  |-  ( ( G  e.  Mnd  /\  x  e.  B )  ->  ( x ( +g  `  G ) ( 0g
`  G ) )  =  x )
109eqcomd 2183 . . . . 5  |-  ( ( G  e.  Mnd  /\  x  e.  B )  ->  x  =  ( x ( +g  `  G
) ( 0g `  G ) ) )
11 rspceov 5916 . . . . 5  |-  ( ( x  e.  B  /\  ( 0g `  G )  e.  B  /\  x  =  ( x ( +g  `  G ) ( 0g `  G
) ) )  ->  E. y  e.  B  E. z  e.  B  x  =  ( y
( +g  `  G ) z ) )
124, 7, 10, 11syl3anc 1238 . . . 4  |-  ( ( G  e.  Mnd  /\  x  e.  B )  ->  E. y  e.  B  E. z  e.  B  x  =  ( y
( +g  `  G ) z ) )
131, 8, 2plusfvalg 12776 . . . . . . . . 9  |-  ( ( G  e.  Mnd  /\  y  e.  B  /\  z  e.  B )  ->  ( y  .+^  z )  =  ( y ( +g  `  G ) z ) )
1413eqeq2d 2189 . . . . . . . 8  |-  ( ( G  e.  Mnd  /\  y  e.  B  /\  z  e.  B )  ->  ( x  =  ( y  .+^  z )  <->  x  =  ( y ( +g  `  G ) z ) ) )
15143expa 1203 . . . . . . 7  |-  ( ( ( G  e.  Mnd  /\  y  e.  B )  /\  z  e.  B
)  ->  ( x  =  ( y  .+^  z )  <->  x  =  ( y ( +g  `  G ) z ) ) )
1615rexbidva 2474 . . . . . 6  |-  ( ( G  e.  Mnd  /\  y  e.  B )  ->  ( E. z  e.  B  x  =  ( y  .+^  z )  <->  E. z  e.  B  x  =  ( y ( +g  `  G ) z ) ) )
1716rexbidva 2474 . . . . 5  |-  ( G  e.  Mnd  ->  ( E. y  e.  B  E. z  e.  B  x  =  ( y  .+^  z )  <->  E. y  e.  B  E. z  e.  B  x  =  ( y ( +g  `  G ) z ) ) )
1817adantr 276 . . . 4  |-  ( ( G  e.  Mnd  /\  x  e.  B )  ->  ( E. y  e.  B  E. z  e.  B  x  =  ( y  .+^  z )  <->  E. y  e.  B  E. z  e.  B  x  =  ( y ( +g  `  G ) z ) ) )
1912, 18mpbird 167 . . 3  |-  ( ( G  e.  Mnd  /\  x  e.  B )  ->  E. y  e.  B  E. z  e.  B  x  =  ( y  .+^  z ) )
2019ralrimiva 2550 . 2  |-  ( G  e.  Mnd  ->  A. x  e.  B  E. y  e.  B  E. z  e.  B  x  =  ( y  .+^  z ) )
21 foov 6020 . 2  |-  (  .+^  : ( B  X.  B
) -onto-> B  <->  (  .+^  : ( B  X.  B ) --> B  /\  A. x  e.  B  E. y  e.  B  E. z  e.  B  x  =  ( y  .+^  z ) ) )
223, 20, 21sylanbrc 417 1  |-  ( G  e.  Mnd  ->  .+^  : ( B  X.  B )
-onto-> B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2148   A.wral 2455   E.wrex 2456    X. cxp 4624   -->wf 5212   -onto->wfo 5214   ` cfv 5216  (class class class)co 5874   Basecbs 12456   +g cplusg 12530   0gc0g 12699   +fcplusf 12766   Mndcmnd 12811
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4118  ax-sep 4121  ax-pow 4174  ax-pr 4209  ax-un 4433  ax-setind 4536  ax-cnex 7901  ax-resscn 7902  ax-1re 7904  ax-addrcl 7907
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-int 3845  df-iun 3888  df-br 4004  df-opab 4065  df-mpt 4066  df-id 4293  df-xp 4632  df-rel 4633  df-cnv 4634  df-co 4635  df-dm 4636  df-rn 4637  df-res 4638  df-ima 4639  df-iota 5178  df-fun 5218  df-fn 5219  df-f 5220  df-f1 5221  df-fo 5222  df-f1o 5223  df-fv 5224  df-riota 5830  df-ov 5877  df-oprab 5878  df-mpo 5879  df-1st 6140  df-2nd 6141  df-inn 8918  df-2 8976  df-ndx 12459  df-slot 12460  df-base 12462  df-plusg 12543  df-0g 12701  df-plusf 12768  df-mgm 12769  df-sgrp 12802  df-mnd 12812
This theorem is referenced by:  mndfo  12834  grpplusfo  12886
  Copyright terms: Public domain W3C validator