ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  rspceov GIF version

Theorem rspceov 5729
Description: A frequently used special case of rspc2ev 2750 for operation values. (Contributed by NM, 21-Mar-2007.)
Assertion
Ref Expression
rspceov ((𝐶𝐴𝐷𝐵𝑆 = (𝐶𝐹𝐷)) → ∃𝑥𝐴𝑦𝐵 𝑆 = (𝑥𝐹𝑦))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝐵   𝑥,𝐶,𝑦   𝑦,𝐷   𝑥,𝐹,𝑦   𝑥,𝑆,𝑦
Allowed substitution hints:   𝐴(𝑦)   𝐷(𝑥)

Proof of Theorem rspceov
StepHypRef Expression
1 oveq1 5697 . . 3 (𝑥 = 𝐶 → (𝑥𝐹𝑦) = (𝐶𝐹𝑦))
21eqeq2d 2106 . 2 (𝑥 = 𝐶 → (𝑆 = (𝑥𝐹𝑦) ↔ 𝑆 = (𝐶𝐹𝑦)))
3 oveq2 5698 . . 3 (𝑦 = 𝐷 → (𝐶𝐹𝑦) = (𝐶𝐹𝐷))
43eqeq2d 2106 . 2 (𝑦 = 𝐷 → (𝑆 = (𝐶𝐹𝑦) ↔ 𝑆 = (𝐶𝐹𝐷)))
52, 4rspc2ev 2750 1 ((𝐶𝐴𝐷𝐵𝑆 = (𝐶𝐹𝐷)) → ∃𝑥𝐴𝑦𝐵 𝑆 = (𝑥𝐹𝑦))
Colors of variables: wff set class
Syntax hints:  wi 4  w3a 927   = wceq 1296  wcel 1445  wrex 2371  (class class class)co 5690
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077
This theorem depends on definitions:  df-bi 116  df-3an 929  df-tru 1299  df-nf 1402  df-sb 1700  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-rex 2376  df-v 2635  df-un 3017  df-sn 3472  df-pr 3473  df-op 3475  df-uni 3676  df-br 3868  df-iota 5014  df-fv 5057  df-ov 5693
This theorem is referenced by:  genpprecll  7170  genppreclu  7171  elz2  8916  znq  9208  qaddcl  9219  qmulcl  9221  qreccl  9226
  Copyright terms: Public domain W3C validator