ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  s1prc Unicode version

Theorem s1prc 11151
Description: Value of a singleton word if the symbol is a proper class. (Contributed by AV, 26-Mar-2022.)
Assertion
Ref Expression
s1prc  |-  ( -.  A  e.  _V  ->  <" A ">  =  <" (/) "> )

Proof of Theorem s1prc
StepHypRef Expression
1 fvprc 5620 . . . 4  |-  ( -.  A  e.  _V  ->  (  _I  `  A )  =  (/) )
21opeq2d 3863 . . 3  |-  ( -.  A  e.  _V  ->  <.
0 ,  (  _I 
`  A ) >.  =  <. 0 ,  (/) >.
)
32sneqd 3679 . 2  |-  ( -.  A  e.  _V  ->  {
<. 0 ,  (  _I  `  A )
>. }  =  { <. 0 ,  (/) >. } )
4 df-s1 11144 . 2  |-  <" A ">  =  { <. 0 ,  (  _I  `  A ) >. }
5 0ex 4210 . . 3  |-  (/)  e.  _V
6 s1val 11145 . . 3  |-  ( (/)  e.  _V  ->  <" (/) ">  =  { <. 0 ,  (/) >. } )
75, 6ax-mp 5 . 2  |-  <" (/) ">  =  { <. 0 ,  (/) >. }
83, 4, 73eqtr4g 2287 1  |-  ( -.  A  e.  _V  ->  <" A ">  =  <" (/) "> )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1395    e. wcel 2200   _Vcvv 2799   (/)c0 3491   {csn 3666   <.cop 3669    _I cid 4378   ` cfv 5317   0cc0 7995   <"cs1 11143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-setind 4628
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-iota 5277  df-fun 5319  df-fv 5325  df-s1 11144
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator