ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  s1prc GIF version

Theorem s1prc 11151
Description: Value of a singleton word if the symbol is a proper class. (Contributed by AV, 26-Mar-2022.)
Assertion
Ref Expression
s1prc 𝐴 ∈ V → ⟨“𝐴”⟩ = ⟨“∅”⟩)

Proof of Theorem s1prc
StepHypRef Expression
1 fvprc 5620 . . . 4 𝐴 ∈ V → ( I ‘𝐴) = ∅)
21opeq2d 3863 . . 3 𝐴 ∈ V → ⟨0, ( I ‘𝐴)⟩ = ⟨0, ∅⟩)
32sneqd 3679 . 2 𝐴 ∈ V → {⟨0, ( I ‘𝐴)⟩} = {⟨0, ∅⟩})
4 df-s1 11144 . 2 ⟨“𝐴”⟩ = {⟨0, ( I ‘𝐴)⟩}
5 0ex 4210 . . 3 ∅ ∈ V
6 s1val 11145 . . 3 (∅ ∈ V → ⟨“∅”⟩ = {⟨0, ∅⟩})
75, 6ax-mp 5 . 2 ⟨“∅”⟩ = {⟨0, ∅⟩}
83, 4, 73eqtr4g 2287 1 𝐴 ∈ V → ⟨“𝐴”⟩ = ⟨“∅”⟩)
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4   = wceq 1395  wcel 2200  Vcvv 2799  c0 3491  {csn 3666  cop 3669   I cid 4378  cfv 5317  0cc0 7995  ⟨“cs1 11143
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-setind 4628
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-iota 5277  df-fun 5319  df-fv 5325  df-s1 11144
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator