| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > s1prc | GIF version | ||
| Description: Value of a singleton word if the symbol is a proper class. (Contributed by AV, 26-Mar-2022.) |
| Ref | Expression |
|---|---|
| s1prc | ⊢ (¬ 𝐴 ∈ V → 〈“𝐴”〉 = 〈“∅”〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvprc 5583 | . . . 4 ⊢ (¬ 𝐴 ∈ V → ( I ‘𝐴) = ∅) | |
| 2 | 1 | opeq2d 3832 | . . 3 ⊢ (¬ 𝐴 ∈ V → 〈0, ( I ‘𝐴)〉 = 〈0, ∅〉) |
| 3 | 2 | sneqd 3651 | . 2 ⊢ (¬ 𝐴 ∈ V → {〈0, ( I ‘𝐴)〉} = {〈0, ∅〉}) |
| 4 | df-s1 11093 | . 2 ⊢ 〈“𝐴”〉 = {〈0, ( I ‘𝐴)〉} | |
| 5 | 0ex 4179 | . . 3 ⊢ ∅ ∈ V | |
| 6 | s1val 11094 | . . 3 ⊢ (∅ ∈ V → 〈“∅”〉 = {〈0, ∅〉}) | |
| 7 | 5, 6 | ax-mp 5 | . 2 ⊢ 〈“∅”〉 = {〈0, ∅〉} |
| 8 | 3, 4, 7 | 3eqtr4g 2264 | 1 ⊢ (¬ 𝐴 ∈ V → 〈“𝐴”〉 = 〈“∅”〉) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1373 ∈ wcel 2177 Vcvv 2773 ∅c0 3464 {csn 3638 〈cop 3641 I cid 4343 ‘cfv 5280 0cc0 7945 〈“cs1 11092 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-nul 4178 ax-pow 4226 ax-pr 4261 ax-setind 4593 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3003 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3857 df-br 4052 df-opab 4114 df-id 4348 df-xp 4689 df-rel 4690 df-cnv 4691 df-co 4692 df-dm 4693 df-iota 5241 df-fun 5282 df-fv 5288 df-s1 11093 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |