| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > s1prc | GIF version | ||
| Description: Value of a singleton word if the symbol is a proper class. (Contributed by AV, 26-Mar-2022.) |
| Ref | Expression |
|---|---|
| s1prc | ⊢ (¬ 𝐴 ∈ V → 〈“𝐴”〉 = 〈“∅”〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fvprc 5569 | . . . 4 ⊢ (¬ 𝐴 ∈ V → ( I ‘𝐴) = ∅) | |
| 2 | 1 | opeq2d 3825 | . . 3 ⊢ (¬ 𝐴 ∈ V → 〈0, ( I ‘𝐴)〉 = 〈0, ∅〉) |
| 3 | 2 | sneqd 3645 | . 2 ⊢ (¬ 𝐴 ∈ V → {〈0, ( I ‘𝐴)〉} = {〈0, ∅〉}) |
| 4 | df-s1 11068 | . 2 ⊢ 〈“𝐴”〉 = {〈0, ( I ‘𝐴)〉} | |
| 5 | 0ex 4170 | . . 3 ⊢ ∅ ∈ V | |
| 6 | s1val 11069 | . . 3 ⊢ (∅ ∈ V → 〈“∅”〉 = {〈0, ∅〉}) | |
| 7 | 5, 6 | ax-mp 5 | . 2 ⊢ 〈“∅”〉 = {〈0, ∅〉} |
| 8 | 3, 4, 7 | 3eqtr4g 2262 | 1 ⊢ (¬ 𝐴 ∈ V → 〈“𝐴”〉 = 〈“∅”〉) |
| Colors of variables: wff set class |
| Syntax hints: ¬ wn 3 → wi 4 = wceq 1372 ∈ wcel 2175 Vcvv 2771 ∅c0 3459 {csn 3632 〈cop 3635 I cid 4334 ‘cfv 5270 0cc0 7924 〈“cs1 11067 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-setind 4584 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-iota 5231 df-fun 5272 df-fv 5278 df-s1 11068 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |