ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simpll1 Unicode version

Theorem simpll1 1038
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simpll1  |-  ( ( ( ( ph  /\  ps  /\  ch )  /\  th )  /\  ta )  ->  ph )

Proof of Theorem simpll1
StepHypRef Expression
1 simpl1 1002 . 2  |-  ( ( ( ph  /\  ps  /\ 
ch )  /\  th )  ->  ph )
21adantr 276 1  |-  ( ( ( ( ph  /\  ps  /\  ch )  /\  th )  /\  ta )  ->  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107
This theorem depends on definitions:  df-bi 117  df-3an 982
This theorem is referenced by:  fidifsnen  6928  ordiso2  7096  ctssdc  7174  addlocpr  7598  xltadd1  9945  nn0ltexp2  10783  hashun  10879  fimaxq  10901  xrmaxltsup  11404  dvdslegcd  12104  lcmledvds  12211  divgcdcoprm0  12242  rpexp  12294  qexpz  12493  dfgrp3mlem  13173  rhmdvdsr  13674  rnglidlmcl  13979  iscnp4  14397  cnconst2  14412  blssps  14606  blss  14607  metcnp  14691  addcncntoplem  14740  cdivcncfap  14783  lgsfvalg  15162  lgsmod  15183  lgsdir  15192  lgsne0  15195
  Copyright terms: Public domain W3C validator