ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simpll1 Unicode version

Theorem simpll1 1060
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simpll1  |-  ( ( ( ( ph  /\  ps  /\  ch )  /\  th )  /\  ta )  ->  ph )

Proof of Theorem simpll1
StepHypRef Expression
1 simpl1 1024 . 2  |-  ( ( ( ph  /\  ps  /\ 
ch )  /\  th )  ->  ph )
21adantr 276 1  |-  ( ( ( ( ph  /\  ps  /\  ch )  /\  th )  /\  ta )  ->  ph )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 1002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107
This theorem depends on definitions:  df-bi 117  df-3an 1004
This theorem is referenced by:  fidifsnen  7028  ordiso2  7198  ctssdc  7276  addlocpr  7719  xltadd1  10068  nn0ltexp2  10926  hashun  11022  fimaxq  11044  xrmaxltsup  11764  dvdslegcd  12480  lcmledvds  12587  divgcdcoprm0  12618  rpexp  12670  qexpz  12870  dfgrp3mlem  13626  rhmdvdsr  14133  rnglidlmcl  14438  iscnp4  14886  cnconst2  14901  blssps  15095  blss  15096  metcnp  15180  addcncntoplem  15229  cdivcncfap  15272  lgsfvalg  15678  lgsmod  15699  lgsdir  15708  lgsne0  15711
  Copyright terms: Public domain W3C validator