ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simpll2 Unicode version

Theorem simpll2 1040
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simpll2  |-  ( ( ( ( ph  /\  ps  /\  ch )  /\  th )  /\  ta )  ->  ps )

Proof of Theorem simpll2
StepHypRef Expression
1 simpl2 1004 . 2  |-  ( ( ( ph  /\  ps  /\ 
ch )  /\  th )  ->  ps )
21adantr 276 1  |-  ( ( ( ( ph  /\  ps  /\  ch )  /\  th )  /\  ta )  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107
This theorem depends on definitions:  df-bi 117  df-3an 983
This theorem is referenced by:  fidceq  6966  fidifsnen  6967  en2eqpr  7004  iunfidisj  7048  ctssdc  7215  cauappcvgprlemlol  7760  caucvgprlemlol  7783  caucvgprprlemlol  7811  elfzonelfzo  10359  qbtwnre  10399  nn0ltexp2  10854  hashun  10950  swrdclg  11103  xrmaxltsup  11569  subcn2  11622  prodmodclem2  11888  divalglemex  12233  divalglemeuneg  12234  dvdslegcd  12285  lcmledvds  12392  modprmn0modprm0  12579  qexpz  12675  rnglidlmcl  14242  iscnp4  14690  cnrest2  14708  blssps  14899  blss  14900  bdbl  14975  metcnp3  14983  addcncntoplem  15033  cdivcncfap  15076  lgsfcl2  15483  lgsdir  15512  lgsne0  15515
  Copyright terms: Public domain W3C validator