ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simpll2 Unicode version

Theorem simpll2 1039
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simpll2  |-  ( ( ( ( ph  /\  ps  /\  ch )  /\  th )  /\  ta )  ->  ps )

Proof of Theorem simpll2
StepHypRef Expression
1 simpl2 1003 . 2  |-  ( ( ( ph  /\  ps  /\ 
ch )  /\  th )  ->  ps )
21adantr 276 1  |-  ( ( ( ( ph  /\  ps  /\  ch )  /\  th )  /\  ta )  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    /\ w3a 980
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107
This theorem depends on definitions:  df-bi 117  df-3an 982
This theorem is referenced by:  fidceq  6925  fidifsnen  6926  en2eqpr  6963  iunfidisj  7005  ctssdc  7172  cauappcvgprlemlol  7707  caucvgprlemlol  7730  caucvgprprlemlol  7758  elfzonelfzo  10297  qbtwnre  10325  nn0ltexp2  10780  hashun  10876  xrmaxltsup  11401  subcn2  11454  prodmodclem2  11720  divalglemex  12063  divalglemeuneg  12064  dvdslegcd  12101  lcmledvds  12208  modprmn0modprm0  12394  qexpz  12490  rnglidlmcl  13976  iscnp4  14386  cnrest2  14404  blssps  14595  blss  14596  bdbl  14671  metcnp3  14679  addcncntoplem  14719  cdivcncfap  14758  lgsfcl2  15122  lgsdir  15151  lgsne0  15154
  Copyright terms: Public domain W3C validator