![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > simpll2 | Unicode version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simpll2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl2 948 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | adantr 271 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 |
This theorem depends on definitions: df-bi 116 df-3an 927 |
This theorem is referenced by: fidceq 6639 fidifsnen 6640 en2eqpr 6677 iunfidisj 6709 cauappcvgprlemlol 7260 caucvgprlemlol 7283 caucvgprprlemlol 7311 elfzonelfzo 9695 qbtwnre 9722 hashun 10267 subcn2 10754 divalglemex 11254 divalglemeuneg 11255 dvdslegcd 11288 lcmledvds 11384 |
Copyright terms: Public domain | W3C validator |