![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > simpll2 | Unicode version |
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.) |
Ref | Expression |
---|---|
simpll2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl2 1003 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | adantr 276 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 |
This theorem depends on definitions: df-bi 117 df-3an 982 |
This theorem is referenced by: fidceq 6927 fidifsnen 6928 en2eqpr 6965 iunfidisj 7007 ctssdc 7174 cauappcvgprlemlol 7709 caucvgprlemlol 7732 caucvgprprlemlol 7760 elfzonelfzo 10300 qbtwnre 10328 nn0ltexp2 10783 hashun 10879 xrmaxltsup 11404 subcn2 11457 prodmodclem2 11723 divalglemex 12066 divalglemeuneg 12067 dvdslegcd 12104 lcmledvds 12211 modprmn0modprm0 12397 qexpz 12493 rnglidlmcl 13979 iscnp4 14397 cnrest2 14415 blssps 14606 blss 14607 bdbl 14682 metcnp3 14690 addcncntoplem 14740 cdivcncfap 14783 lgsfcl2 15163 lgsdir 15192 lgsne0 15195 |
Copyright terms: Public domain | W3C validator |