ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  simpll2 Unicode version

Theorem simpll2 984
Description: Simplification of conjunction. (Contributed by NM, 9-Mar-2012.)
Assertion
Ref Expression
simpll2  |-  ( ( ( ( ph  /\  ps  /\  ch )  /\  th )  /\  ta )  ->  ps )

Proof of Theorem simpll2
StepHypRef Expression
1 simpl2 948 . 2  |-  ( ( ( ph  /\  ps  /\ 
ch )  /\  th )  ->  ps )
21adantr 271 1  |-  ( ( ( ( ph  /\  ps  /\  ch )  /\  th )  /\  ta )  ->  ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 925
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106
This theorem depends on definitions:  df-bi 116  df-3an 927
This theorem is referenced by:  fidceq  6639  fidifsnen  6640  en2eqpr  6677  iunfidisj  6709  cauappcvgprlemlol  7260  caucvgprlemlol  7283  caucvgprprlemlol  7311  elfzonelfzo  9695  qbtwnre  9722  hashun  10267  subcn2  10754  divalglemex  11254  divalglemeuneg  11255  dvdslegcd  11288  lcmledvds  11384
  Copyright terms: Public domain W3C validator