ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdslegcd Unicode version

Theorem dvdslegcd 12480
Description: An integer which divides both operands of the  gcd operator is bounded by it. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
dvdslegcd  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0 ) )  -> 
( ( K  ||  M  /\  K  ||  N
)  ->  K  <_  ( M  gcd  N ) ) )

Proof of Theorem dvdslegcd
Dummy variables  n  f  g  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll1 1060 . . . . 5  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0
) )  /\  ( K  ||  M  /\  K  ||  N ) )  ->  K  e.  ZZ )
21zred 9565 . . . 4  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0
) )  /\  ( K  ||  M  /\  K  ||  N ) )  ->  K  e.  RR )
3 simpll2 1061 . . . . 5  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0
) )  /\  ( K  ||  M  /\  K  ||  N ) )  ->  M  e.  ZZ )
4 simpll3 1062 . . . . 5  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0
) )  /\  ( K  ||  M  /\  K  ||  N ) )  ->  N  e.  ZZ )
5 simplr 528 . . . . 5  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0
) )  /\  ( K  ||  M  /\  K  ||  N ) )  ->  -.  ( M  =  0  /\  N  =  0 ) )
6 lttri3 8222 . . . . . . 7  |-  ( ( f  e.  RR  /\  g  e.  RR )  ->  ( f  =  g  <-> 
( -.  f  < 
g  /\  -.  g  <  f ) ) )
76adantl 277 . . . . . 6  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0
) )  /\  (
f  e.  RR  /\  g  e.  RR )
)  ->  ( f  =  g  <->  ( -.  f  <  g  /\  -.  g  <  f ) ) )
8 zssre 9449 . . . . . . 7  |-  ZZ  C_  RR
9 gcdsupex 12473 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0 ) )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  | 
( n  ||  M  /\  n  ||  N ) }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ( n  ||  M  /\  n  ||  N
) } y  < 
z ) ) )
10 ssrexv 3289 . . . . . . 7  |-  ( ZZ  C_  RR  ->  ( E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ( n 
||  M  /\  n  ||  N ) }  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  { n  e.  ZZ  |  ( n 
||  M  /\  n  ||  N ) } y  <  z ) )  ->  E. x  e.  RR  ( A. y  e.  {
n  e.  ZZ  | 
( n  ||  M  /\  n  ||  N ) }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ( n  ||  M  /\  n  ||  N
) } y  < 
z ) ) ) )
118, 9, 10mpsyl 65 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0 ) )  ->  E. x  e.  RR  ( A. y  e.  {
n  e.  ZZ  | 
( n  ||  M  /\  n  ||  N ) }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ( n  ||  M  /\  n  ||  N
) } y  < 
z ) ) )
127, 11supclti 7161 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0 ) )  ->  sup ( { n  e.  ZZ  |  ( n 
||  M  /\  n  ||  N ) } ,  RR ,  <  )  e.  RR )
133, 4, 5, 12syl21anc 1270 . . . 4  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0
) )  /\  ( K  ||  M  /\  K  ||  N ) )  ->  sup ( { n  e.  ZZ  |  ( n 
||  M  /\  n  ||  N ) } ,  RR ,  <  )  e.  RR )
14 simpr 110 . . . . . 6  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0
) )  /\  ( K  ||  M  /\  K  ||  N ) )  -> 
( K  ||  M  /\  K  ||  N ) )
15 breq1 4085 . . . . . . . . 9  |-  ( n  =  K  ->  (
n  ||  M  <->  K  ||  M
) )
16 breq1 4085 . . . . . . . . 9  |-  ( n  =  K  ->  (
n  ||  N  <->  K  ||  N
) )
1715, 16anbi12d 473 . . . . . . . 8  |-  ( n  =  K  ->  (
( n  ||  M  /\  n  ||  N )  <-> 
( K  ||  M  /\  K  ||  N ) ) )
1817elrab3 2960 . . . . . . 7  |-  ( K  e.  ZZ  ->  ( K  e.  { n  e.  ZZ  |  ( n 
||  M  /\  n  ||  N ) }  <->  ( K  ||  M  /\  K  ||  N ) ) )
191, 18syl 14 . . . . . 6  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0
) )  /\  ( K  ||  M  /\  K  ||  N ) )  -> 
( K  e.  {
n  e.  ZZ  | 
( n  ||  M  /\  n  ||  N ) }  <->  ( K  ||  M  /\  K  ||  N
) ) )
2014, 19mpbird 167 . . . . 5  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0
) )  /\  ( K  ||  M  /\  K  ||  N ) )  ->  K  e.  { n  e.  ZZ  |  ( n 
||  M  /\  n  ||  N ) } )
217, 11supubti 7162 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0 ) )  ->  ( K  e. 
{ n  e.  ZZ  |  ( n  ||  M  /\  n  ||  N
) }  ->  -.  sup ( { n  e.  ZZ  |  ( n 
||  M  /\  n  ||  N ) } ,  RR ,  <  )  < 
K ) )
223, 4, 5, 21syl21anc 1270 . . . . 5  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0
) )  /\  ( K  ||  M  /\  K  ||  N ) )  -> 
( K  e.  {
n  e.  ZZ  | 
( n  ||  M  /\  n  ||  N ) }  ->  -.  sup ( { n  e.  ZZ  |  ( n  ||  M  /\  n  ||  N
) } ,  RR ,  <  )  <  K
) )
2320, 22mpd 13 . . . 4  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0
) )  /\  ( K  ||  M  /\  K  ||  N ) )  ->  -.  sup ( { n  e.  ZZ  |  ( n 
||  M  /\  n  ||  N ) } ,  RR ,  <  )  < 
K )
242, 13, 23nltled 8263 . . 3  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0
) )  /\  ( K  ||  M  /\  K  ||  N ) )  ->  K  <_  sup ( { n  e.  ZZ  |  ( n 
||  M  /\  n  ||  N ) } ,  RR ,  <  ) )
25 gcdn0val 12477 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0 ) )  ->  ( M  gcd  N )  =  sup ( { n  e.  ZZ  |  ( n  ||  M  /\  n  ||  N
) } ,  RR ,  <  ) )
263, 4, 5, 25syl21anc 1270 . . 3  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0
) )  /\  ( K  ||  M  /\  K  ||  N ) )  -> 
( M  gcd  N
)  =  sup ( { n  e.  ZZ  |  ( n  ||  M  /\  n  ||  N
) } ,  RR ,  <  ) )
2724, 26breqtrrd 4110 . 2  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0
) )  /\  ( K  ||  M  /\  K  ||  N ) )  ->  K  <_  ( M  gcd  N ) )
2827ex 115 1  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0 ) )  -> 
( ( K  ||  M  /\  K  ||  N
)  ->  K  <_  ( M  gcd  N ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 1002    = wceq 1395    e. wcel 2200   A.wral 2508   E.wrex 2509   {crab 2512    C_ wss 3197   class class class wbr 4082  (class class class)co 6000   supcsup 7145   RRcr 7994   0cc0 7995    < clt 8177    <_ cle 8178   ZZcz 9442    || cdvds 12293    gcd cgcd 12469
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-coll 4198  ax-sep 4201  ax-nul 4209  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-iinf 4679  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-arch 8114  ax-caucvg 8115
This theorem depends on definitions:  df-bi 117  df-dc 840  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-tr 4182  df-id 4383  df-po 4386  df-iso 4387  df-iord 4456  df-on 4458  df-ilim 4459  df-suc 4461  df-iom 4682  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-f1 5322  df-fo 5323  df-f1o 5324  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-recs 6449  df-frec 6535  df-sup 7147  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-n0 9366  df-z 9443  df-uz 9719  df-q 9811  df-rp 9846  df-fz 10201  df-fzo 10335  df-fl 10485  df-mod 10540  df-seqfrec 10665  df-exp 10756  df-cj 11348  df-re 11349  df-im 11350  df-rsqrt 11504  df-abs 11505  df-dvds 12294  df-gcd 12470
This theorem is referenced by:  nndvdslegcd  12481  gcd0id  12495  gcdneg  12498  gcdaddm  12500  gcdzeq  12538  rpdvds  12616  coprm  12661  phimullem  12742  pockthlem  12874  2sqlem8a  15795  2sqlem8  15796
  Copyright terms: Public domain W3C validator