ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdslegcd Unicode version

Theorem dvdslegcd 12370
Description: An integer which divides both operands of the  gcd operator is bounded by it. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
dvdslegcd  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0 ) )  -> 
( ( K  ||  M  /\  K  ||  N
)  ->  K  <_  ( M  gcd  N ) ) )

Proof of Theorem dvdslegcd
Dummy variables  n  f  g  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll1 1039 . . . . 5  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0
) )  /\  ( K  ||  M  /\  K  ||  N ) )  ->  K  e.  ZZ )
21zred 9525 . . . 4  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0
) )  /\  ( K  ||  M  /\  K  ||  N ) )  ->  K  e.  RR )
3 simpll2 1040 . . . . 5  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0
) )  /\  ( K  ||  M  /\  K  ||  N ) )  ->  M  e.  ZZ )
4 simpll3 1041 . . . . 5  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0
) )  /\  ( K  ||  M  /\  K  ||  N ) )  ->  N  e.  ZZ )
5 simplr 528 . . . . 5  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0
) )  /\  ( K  ||  M  /\  K  ||  N ) )  ->  -.  ( M  =  0  /\  N  =  0 ) )
6 lttri3 8182 . . . . . . 7  |-  ( ( f  e.  RR  /\  g  e.  RR )  ->  ( f  =  g  <-> 
( -.  f  < 
g  /\  -.  g  <  f ) ) )
76adantl 277 . . . . . 6  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0
) )  /\  (
f  e.  RR  /\  g  e.  RR )
)  ->  ( f  =  g  <->  ( -.  f  <  g  /\  -.  g  <  f ) ) )
8 zssre 9409 . . . . . . 7  |-  ZZ  C_  RR
9 gcdsupex 12363 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0 ) )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  | 
( n  ||  M  /\  n  ||  N ) }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ( n  ||  M  /\  n  ||  N
) } y  < 
z ) ) )
10 ssrexv 3262 . . . . . . 7  |-  ( ZZ  C_  RR  ->  ( E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ( n 
||  M  /\  n  ||  N ) }  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  { n  e.  ZZ  |  ( n 
||  M  /\  n  ||  N ) } y  <  z ) )  ->  E. x  e.  RR  ( A. y  e.  {
n  e.  ZZ  | 
( n  ||  M  /\  n  ||  N ) }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ( n  ||  M  /\  n  ||  N
) } y  < 
z ) ) ) )
118, 9, 10mpsyl 65 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0 ) )  ->  E. x  e.  RR  ( A. y  e.  {
n  e.  ZZ  | 
( n  ||  M  /\  n  ||  N ) }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ( n  ||  M  /\  n  ||  N
) } y  < 
z ) ) )
127, 11supclti 7121 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0 ) )  ->  sup ( { n  e.  ZZ  |  ( n 
||  M  /\  n  ||  N ) } ,  RR ,  <  )  e.  RR )
133, 4, 5, 12syl21anc 1249 . . . 4  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0
) )  /\  ( K  ||  M  /\  K  ||  N ) )  ->  sup ( { n  e.  ZZ  |  ( n 
||  M  /\  n  ||  N ) } ,  RR ,  <  )  e.  RR )
14 simpr 110 . . . . . 6  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0
) )  /\  ( K  ||  M  /\  K  ||  N ) )  -> 
( K  ||  M  /\  K  ||  N ) )
15 breq1 4057 . . . . . . . . 9  |-  ( n  =  K  ->  (
n  ||  M  <->  K  ||  M
) )
16 breq1 4057 . . . . . . . . 9  |-  ( n  =  K  ->  (
n  ||  N  <->  K  ||  N
) )
1715, 16anbi12d 473 . . . . . . . 8  |-  ( n  =  K  ->  (
( n  ||  M  /\  n  ||  N )  <-> 
( K  ||  M  /\  K  ||  N ) ) )
1817elrab3 2934 . . . . . . 7  |-  ( K  e.  ZZ  ->  ( K  e.  { n  e.  ZZ  |  ( n 
||  M  /\  n  ||  N ) }  <->  ( K  ||  M  /\  K  ||  N ) ) )
191, 18syl 14 . . . . . 6  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0
) )  /\  ( K  ||  M  /\  K  ||  N ) )  -> 
( K  e.  {
n  e.  ZZ  | 
( n  ||  M  /\  n  ||  N ) }  <->  ( K  ||  M  /\  K  ||  N
) ) )
2014, 19mpbird 167 . . . . 5  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0
) )  /\  ( K  ||  M  /\  K  ||  N ) )  ->  K  e.  { n  e.  ZZ  |  ( n 
||  M  /\  n  ||  N ) } )
217, 11supubti 7122 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0 ) )  ->  ( K  e. 
{ n  e.  ZZ  |  ( n  ||  M  /\  n  ||  N
) }  ->  -.  sup ( { n  e.  ZZ  |  ( n 
||  M  /\  n  ||  N ) } ,  RR ,  <  )  < 
K ) )
223, 4, 5, 21syl21anc 1249 . . . . 5  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0
) )  /\  ( K  ||  M  /\  K  ||  N ) )  -> 
( K  e.  {
n  e.  ZZ  | 
( n  ||  M  /\  n  ||  N ) }  ->  -.  sup ( { n  e.  ZZ  |  ( n  ||  M  /\  n  ||  N
) } ,  RR ,  <  )  <  K
) )
2320, 22mpd 13 . . . 4  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0
) )  /\  ( K  ||  M  /\  K  ||  N ) )  ->  -.  sup ( { n  e.  ZZ  |  ( n 
||  M  /\  n  ||  N ) } ,  RR ,  <  )  < 
K )
242, 13, 23nltled 8223 . . 3  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0
) )  /\  ( K  ||  M  /\  K  ||  N ) )  ->  K  <_  sup ( { n  e.  ZZ  |  ( n 
||  M  /\  n  ||  N ) } ,  RR ,  <  ) )
25 gcdn0val 12367 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0 ) )  ->  ( M  gcd  N )  =  sup ( { n  e.  ZZ  |  ( n  ||  M  /\  n  ||  N
) } ,  RR ,  <  ) )
263, 4, 5, 25syl21anc 1249 . . 3  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0
) )  /\  ( K  ||  M  /\  K  ||  N ) )  -> 
( M  gcd  N
)  =  sup ( { n  e.  ZZ  |  ( n  ||  M  /\  n  ||  N
) } ,  RR ,  <  ) )
2724, 26breqtrrd 4082 . 2  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0
) )  /\  ( K  ||  M  /\  K  ||  N ) )  ->  K  <_  ( M  gcd  N ) )
2827ex 115 1  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0 ) )  -> 
( ( K  ||  M  /\  K  ||  N
)  ->  K  <_  ( M  gcd  N ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2177   A.wral 2485   E.wrex 2486   {crab 2489    C_ wss 3170   class class class wbr 4054  (class class class)co 5962   supcsup 7105   RRcr 7954   0cc0 7955    < clt 8137    <_ cle 8138   ZZcz 9402    || cdvds 12183    gcd cgcd 12359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-coll 4170  ax-sep 4173  ax-nul 4181  ax-pow 4229  ax-pr 4264  ax-un 4493  ax-setind 4598  ax-iinf 4649  ax-cnex 8046  ax-resscn 8047  ax-1cn 8048  ax-1re 8049  ax-icn 8050  ax-addcl 8051  ax-addrcl 8052  ax-mulcl 8053  ax-mulrcl 8054  ax-addcom 8055  ax-mulcom 8056  ax-addass 8057  ax-mulass 8058  ax-distr 8059  ax-i2m1 8060  ax-0lt1 8061  ax-1rid 8062  ax-0id 8063  ax-rnegex 8064  ax-precex 8065  ax-cnre 8066  ax-pre-ltirr 8067  ax-pre-ltwlin 8068  ax-pre-lttrn 8069  ax-pre-apti 8070  ax-pre-ltadd 8071  ax-pre-mulgt0 8072  ax-pre-mulext 8073  ax-arch 8074  ax-caucvg 8075
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-nel 2473  df-ral 2490  df-rex 2491  df-reu 2492  df-rmo 2493  df-rab 2494  df-v 2775  df-sbc 3003  df-csb 3098  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-if 3576  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-int 3895  df-iun 3938  df-br 4055  df-opab 4117  df-mpt 4118  df-tr 4154  df-id 4353  df-po 4356  df-iso 4357  df-iord 4426  df-on 4428  df-ilim 4429  df-suc 4431  df-iom 4652  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-res 4700  df-ima 4701  df-iota 5246  df-fun 5287  df-fn 5288  df-f 5289  df-f1 5290  df-fo 5291  df-f1o 5292  df-fv 5293  df-riota 5917  df-ov 5965  df-oprab 5966  df-mpo 5967  df-1st 6244  df-2nd 6245  df-recs 6409  df-frec 6495  df-sup 7107  df-pnf 8139  df-mnf 8140  df-xr 8141  df-ltxr 8142  df-le 8143  df-sub 8275  df-neg 8276  df-reap 8678  df-ap 8685  df-div 8776  df-inn 9067  df-2 9125  df-3 9126  df-4 9127  df-n0 9326  df-z 9403  df-uz 9679  df-q 9771  df-rp 9806  df-fz 10161  df-fzo 10295  df-fl 10445  df-mod 10500  df-seqfrec 10625  df-exp 10716  df-cj 11238  df-re 11239  df-im 11240  df-rsqrt 11394  df-abs 11395  df-dvds 12184  df-gcd 12360
This theorem is referenced by:  nndvdslegcd  12371  gcd0id  12385  gcdneg  12388  gcdaddm  12390  gcdzeq  12428  rpdvds  12506  coprm  12551  phimullem  12632  pockthlem  12764  2sqlem8a  15684  2sqlem8  15685
  Copyright terms: Public domain W3C validator