ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dvdslegcd Unicode version

Theorem dvdslegcd 11948
Description: An integer which divides both operands of the  gcd operator is bounded by it. (Contributed by Paul Chapman, 21-Mar-2011.)
Assertion
Ref Expression
dvdslegcd  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0 ) )  -> 
( ( K  ||  M  /\  K  ||  N
)  ->  K  <_  ( M  gcd  N ) ) )

Proof of Theorem dvdslegcd
Dummy variables  n  f  g  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpll1 1036 . . . . 5  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0
) )  /\  ( K  ||  M  /\  K  ||  N ) )  ->  K  e.  ZZ )
21zred 9364 . . . 4  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0
) )  /\  ( K  ||  M  /\  K  ||  N ) )  ->  K  e.  RR )
3 simpll2 1037 . . . . 5  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0
) )  /\  ( K  ||  M  /\  K  ||  N ) )  ->  M  e.  ZZ )
4 simpll3 1038 . . . . 5  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0
) )  /\  ( K  ||  M  /\  K  ||  N ) )  ->  N  e.  ZZ )
5 simplr 528 . . . . 5  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0
) )  /\  ( K  ||  M  /\  K  ||  N ) )  ->  -.  ( M  =  0  /\  N  =  0 ) )
6 lttri3 8027 . . . . . . 7  |-  ( ( f  e.  RR  /\  g  e.  RR )  ->  ( f  =  g  <-> 
( -.  f  < 
g  /\  -.  g  <  f ) ) )
76adantl 277 . . . . . 6  |-  ( ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0
) )  /\  (
f  e.  RR  /\  g  e.  RR )
)  ->  ( f  =  g  <->  ( -.  f  <  g  /\  -.  g  <  f ) ) )
8 zssre 9249 . . . . . . 7  |-  ZZ  C_  RR
9 gcdsupex 11941 . . . . . . 7  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0 ) )  ->  E. x  e.  ZZ  ( A. y  e.  {
n  e.  ZZ  | 
( n  ||  M  /\  n  ||  N ) }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ( n  ||  M  /\  n  ||  N
) } y  < 
z ) ) )
10 ssrexv 3220 . . . . . . 7  |-  ( ZZ  C_  RR  ->  ( E. x  e.  ZZ  ( A. y  e.  { n  e.  ZZ  |  ( n 
||  M  /\  n  ||  N ) }  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  { n  e.  ZZ  |  ( n 
||  M  /\  n  ||  N ) } y  <  z ) )  ->  E. x  e.  RR  ( A. y  e.  {
n  e.  ZZ  | 
( n  ||  M  /\  n  ||  N ) }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ( n  ||  M  /\  n  ||  N
) } y  < 
z ) ) ) )
118, 9, 10mpsyl 65 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0 ) )  ->  E. x  e.  RR  ( A. y  e.  {
n  e.  ZZ  | 
( n  ||  M  /\  n  ||  N ) }  -.  x  < 
y  /\  A. y  e.  RR  ( y  < 
x  ->  E. z  e.  { n  e.  ZZ  |  ( n  ||  M  /\  n  ||  N
) } y  < 
z ) ) )
127, 11supclti 6991 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0 ) )  ->  sup ( { n  e.  ZZ  |  ( n 
||  M  /\  n  ||  N ) } ,  RR ,  <  )  e.  RR )
133, 4, 5, 12syl21anc 1237 . . . 4  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0
) )  /\  ( K  ||  M  /\  K  ||  N ) )  ->  sup ( { n  e.  ZZ  |  ( n 
||  M  /\  n  ||  N ) } ,  RR ,  <  )  e.  RR )
14 simpr 110 . . . . . 6  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0
) )  /\  ( K  ||  M  /\  K  ||  N ) )  -> 
( K  ||  M  /\  K  ||  N ) )
15 breq1 4003 . . . . . . . . 9  |-  ( n  =  K  ->  (
n  ||  M  <->  K  ||  M
) )
16 breq1 4003 . . . . . . . . 9  |-  ( n  =  K  ->  (
n  ||  N  <->  K  ||  N
) )
1715, 16anbi12d 473 . . . . . . . 8  |-  ( n  =  K  ->  (
( n  ||  M  /\  n  ||  N )  <-> 
( K  ||  M  /\  K  ||  N ) ) )
1817elrab3 2894 . . . . . . 7  |-  ( K  e.  ZZ  ->  ( K  e.  { n  e.  ZZ  |  ( n 
||  M  /\  n  ||  N ) }  <->  ( K  ||  M  /\  K  ||  N ) ) )
191, 18syl 14 . . . . . 6  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0
) )  /\  ( K  ||  M  /\  K  ||  N ) )  -> 
( K  e.  {
n  e.  ZZ  | 
( n  ||  M  /\  n  ||  N ) }  <->  ( K  ||  M  /\  K  ||  N
) ) )
2014, 19mpbird 167 . . . . 5  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0
) )  /\  ( K  ||  M  /\  K  ||  N ) )  ->  K  e.  { n  e.  ZZ  |  ( n 
||  M  /\  n  ||  N ) } )
217, 11supubti 6992 . . . . . 6  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0 ) )  ->  ( K  e. 
{ n  e.  ZZ  |  ( n  ||  M  /\  n  ||  N
) }  ->  -.  sup ( { n  e.  ZZ  |  ( n 
||  M  /\  n  ||  N ) } ,  RR ,  <  )  < 
K ) )
223, 4, 5, 21syl21anc 1237 . . . . 5  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0
) )  /\  ( K  ||  M  /\  K  ||  N ) )  -> 
( K  e.  {
n  e.  ZZ  | 
( n  ||  M  /\  n  ||  N ) }  ->  -.  sup ( { n  e.  ZZ  |  ( n  ||  M  /\  n  ||  N
) } ,  RR ,  <  )  <  K
) )
2320, 22mpd 13 . . . 4  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0
) )  /\  ( K  ||  M  /\  K  ||  N ) )  ->  -.  sup ( { n  e.  ZZ  |  ( n 
||  M  /\  n  ||  N ) } ,  RR ,  <  )  < 
K )
242, 13, 23nltled 8068 . . 3  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0
) )  /\  ( K  ||  M  /\  K  ||  N ) )  ->  K  <_  sup ( { n  e.  ZZ  |  ( n 
||  M  /\  n  ||  N ) } ,  RR ,  <  ) )
25 gcdn0val 11945 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0 ) )  ->  ( M  gcd  N )  =  sup ( { n  e.  ZZ  |  ( n  ||  M  /\  n  ||  N
) } ,  RR ,  <  ) )
263, 4, 5, 25syl21anc 1237 . . 3  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0
) )  /\  ( K  ||  M  /\  K  ||  N ) )  -> 
( M  gcd  N
)  =  sup ( { n  e.  ZZ  |  ( n  ||  M  /\  n  ||  N
) } ,  RR ,  <  ) )
2724, 26breqtrrd 4028 . 2  |-  ( ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0
) )  /\  ( K  ||  M  /\  K  ||  N ) )  ->  K  <_  ( M  gcd  N ) )
2827ex 115 1  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0 ) )  -> 
( ( K  ||  M  /\  K  ||  N
)  ->  K  <_  ( M  gcd  N ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 978    = wceq 1353    e. wcel 2148   A.wral 2455   E.wrex 2456   {crab 2459    C_ wss 3129   class class class wbr 4000  (class class class)co 5869   supcsup 6975   RRcr 7801   0cc0 7802    < clt 7982    <_ cle 7983   ZZcz 9242    || cdvds 11778    gcd cgcd 11926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920  ax-arch 7921  ax-caucvg 7922
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-po 4293  df-iso 4294  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-frec 6386  df-sup 6977  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243  df-uz 9518  df-q 9609  df-rp 9641  df-fz 9996  df-fzo 10129  df-fl 10256  df-mod 10309  df-seqfrec 10432  df-exp 10506  df-cj 10835  df-re 10836  df-im 10837  df-rsqrt 10991  df-abs 10992  df-dvds 11779  df-gcd 11927
This theorem is referenced by:  nndvdslegcd  11949  gcd0id  11963  gcdneg  11966  gcdaddm  11968  gcdzeq  12006  rpdvds  12082  coprm  12127  phimullem  12208  pockthlem  12337  2sqlem8a  14125  2sqlem8  14126
  Copyright terms: Public domain W3C validator