ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cdivcncfap Unicode version

Theorem cdivcncfap 13227
Description: Division with a constant numerator is continuous. (Contributed by Mario Carneiro, 28-Dec-2016.) (Revised by Jim Kingdon, 26-May-2023.)
Hypothesis
Ref Expression
cdivcncf.1  |-  F  =  ( x  e.  {
y  e.  CC  | 
y #  0 }  |->  ( A  /  x ) )
Assertion
Ref Expression
cdivcncfap  |-  ( A  e.  CC  ->  F  e.  ( { y  e.  CC  |  y #  0 } -cn-> CC ) )
Distinct variable group:    x, A, y
Allowed substitution hints:    F( x, y)

Proof of Theorem cdivcncfap
Dummy variables  w  z  a  b  d  e are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cdivcncf.1 . 2  |-  F  =  ( x  e.  {
y  e.  CC  | 
y #  0 }  |->  ( A  /  x ) )
2 simpl 108 . . . . 5  |-  ( ( A  e.  CC  /\  x  e.  { y  e.  CC  |  y #  0 } )  ->  A  e.  CC )
3 breq1 3985 . . . . . . . . 9  |-  ( y  =  x  ->  (
y #  0  <->  x #  0
) )
43elrab 2882 . . . . . . . 8  |-  ( x  e.  { y  e.  CC  |  y #  0 }  <->  ( x  e.  CC  /\  x #  0 ) )
54biimpi 119 . . . . . . 7  |-  ( x  e.  { y  e.  CC  |  y #  0 }  ->  ( x  e.  CC  /\  x #  0 ) )
65adantl 275 . . . . . 6  |-  ( ( A  e.  CC  /\  x  e.  { y  e.  CC  |  y #  0 } )  ->  (
x  e.  CC  /\  x #  0 ) )
76simpld 111 . . . . 5  |-  ( ( A  e.  CC  /\  x  e.  { y  e.  CC  |  y #  0 } )  ->  x  e.  CC )
86simprd 113 . . . . 5  |-  ( ( A  e.  CC  /\  x  e.  { y  e.  CC  |  y #  0 } )  ->  x #  0 )
92, 7, 8divrecapd 8689 . . . 4  |-  ( ( A  e.  CC  /\  x  e.  { y  e.  CC  |  y #  0 } )  ->  ( A  /  x )  =  ( A  x.  (
1  /  x ) ) )
109mpteq2dva 4072 . . 3  |-  ( A  e.  CC  ->  (
x  e.  { y  e.  CC  |  y #  0 }  |->  ( A  /  x ) )  =  ( x  e. 
{ y  e.  CC  |  y #  0 }  |->  ( A  x.  (
1  /  x ) ) ) )
11 recclap 8575 . . . . . . 7  |-  ( ( x  e.  CC  /\  x #  0 )  ->  (
1  /  x )  e.  CC )
124, 11sylbi 120 . . . . . 6  |-  ( x  e.  { y  e.  CC  |  y #  0 }  ->  ( 1  /  x )  e.  CC )
1312adantl 275 . . . . 5  |-  ( ( A  e.  CC  /\  x  e.  { y  e.  CC  |  y #  0 } )  ->  (
1  /  x )  e.  CC )
14 oveq2 5850 . . . . . . 7  |-  ( w  =  x  ->  (
1  /  w )  =  ( 1  /  x ) )
1514cbvmptv 4078 . . . . . 6  |-  ( w  e.  { y  e.  CC  |  y #  0 }  |->  ( 1  /  w ) )  =  ( x  e.  {
y  e.  CC  | 
y #  0 }  |->  ( 1  /  x ) )
1615a1i 9 . . . . 5  |-  ( A  e.  CC  ->  (
w  e.  { y  e.  CC  |  y #  0 }  |->  ( 1  /  w ) )  =  ( x  e. 
{ y  e.  CC  |  y #  0 }  |->  ( 1  /  x
) ) )
17 eqidd 2166 . . . . 5  |-  ( A  e.  CC  ->  (
z  e.  CC  |->  ( A  x.  z ) )  =  ( z  e.  CC  |->  ( A  x.  z ) ) )
18 oveq2 5850 . . . . 5  |-  ( z  =  ( 1  /  x )  ->  ( A  x.  z )  =  ( A  x.  ( 1  /  x
) ) )
1913, 16, 17, 18fmptco 5651 . . . 4  |-  ( A  e.  CC  ->  (
( z  e.  CC  |->  ( A  x.  z
) )  o.  (
w  e.  { y  e.  CC  |  y #  0 }  |->  ( 1  /  w ) ) )  =  ( x  e.  { y  e.  CC  |  y #  0 }  |->  ( A  x.  ( 1  /  x
) ) ) )
20 breq1 3985 . . . . . . . . . 10  |-  ( y  =  w  ->  (
y #  0  <->  w #  0
) )
2120elrab 2882 . . . . . . . . 9  |-  ( w  e.  { y  e.  CC  |  y #  0 }  <->  ( w  e.  CC  /\  w #  0 ) )
22 recclap 8575 . . . . . . . . 9  |-  ( ( w  e.  CC  /\  w #  0 )  ->  (
1  /  w )  e.  CC )
2321, 22sylbi 120 . . . . . . . 8  |-  ( w  e.  { y  e.  CC  |  y #  0 }  ->  ( 1  /  w )  e.  CC )
2423adantl 275 . . . . . . 7  |-  ( ( A  e.  CC  /\  w  e.  { y  e.  CC  |  y #  0 } )  ->  (
1  /  w )  e.  CC )
2524fmpttd 5640 . . . . . 6  |-  ( A  e.  CC  ->  (
w  e.  { y  e.  CC  |  y #  0 }  |->  ( 1  /  w ) ) : { y  e.  CC  |  y #  0 } --> CC )
26 breq1 3985 . . . . . . . . 9  |-  ( y  =  b  ->  (
y #  0  <->  b #  0
) )
2726elrab 2882 . . . . . . . 8  |-  ( b  e.  { y  e.  CC  |  y #  0 }  <->  ( b  e.  CC  /\  b #  0 ) )
28 eqid 2165 . . . . . . . . . . . 12  |-  (inf ( { 1 ,  ( ( abs `  b
)  x.  e ) } ,  RR ,  <  )  x.  ( ( abs `  b )  /  2 ) )  =  (inf ( { 1 ,  ( ( abs `  b )  x.  e ) } ,  RR ,  <  )  x.  ( ( abs `  b )  /  2
) )
2928reccn2ap 11254 . . . . . . . . . . 11  |-  ( ( b  e.  CC  /\  b #  0  /\  e  e.  RR+ )  ->  E. d  e.  RR+  A. a  e. 
{ y  e.  CC  |  y #  0 } 
( ( abs `  (
a  -  b ) )  <  d  -> 
( abs `  (
( 1  /  a
)  -  ( 1  /  b ) ) )  <  e ) )
30 eqidd 2166 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( b  e.  CC  /\  b #  0  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  a  e.  {
y  e.  CC  | 
y #  0 } )  ->  ( w  e. 
{ y  e.  CC  |  y #  0 }  |->  ( 1  /  w
) )  =  ( w  e.  { y  e.  CC  |  y #  0 }  |->  ( 1  /  w ) ) )
31 oveq2 5850 . . . . . . . . . . . . . . . . . . 19  |-  ( w  =  a  ->  (
1  /  w )  =  ( 1  / 
a ) )
3231adantl 275 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( b  e.  CC  /\  b #  0  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  a  e.  {
y  e.  CC  | 
y #  0 } )  /\  w  =  a )  ->  ( 1  /  w )  =  ( 1  /  a
) )
33 simpr 109 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( b  e.  CC  /\  b #  0  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  a  e.  {
y  e.  CC  | 
y #  0 } )  ->  a  e.  {
y  e.  CC  | 
y #  0 } )
34 breq1 3985 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  =  a  ->  (
y #  0  <->  a #  0
) )
3534elrab 2882 . . . . . . . . . . . . . . . . . . . 20  |-  ( a  e.  { y  e.  CC  |  y #  0 }  <->  ( a  e.  CC  /\  a #  0 ) )
36 recclap 8575 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( a  e.  CC  /\  a #  0 )  ->  (
1  /  a )  e.  CC )
3735, 36sylbi 120 . . . . . . . . . . . . . . . . . . 19  |-  ( a  e.  { y  e.  CC  |  y #  0 }  ->  ( 1  /  a )  e.  CC )
3837adantl 275 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( b  e.  CC  /\  b #  0  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  a  e.  {
y  e.  CC  | 
y #  0 } )  ->  ( 1  / 
a )  e.  CC )
3930, 32, 33, 38fvmptd 5567 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( b  e.  CC  /\  b #  0  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  a  e.  {
y  e.  CC  | 
y #  0 } )  ->  ( ( w  e.  { y  e.  CC  |  y #  0 }  |->  ( 1  /  w ) ) `  a )  =  ( 1  /  a ) )
40 oveq2 5850 . . . . . . . . . . . . . . . . . . 19  |-  ( w  =  b  ->  (
1  /  w )  =  ( 1  / 
b ) )
4140adantl 275 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( b  e.  CC  /\  b #  0  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  a  e.  {
y  e.  CC  | 
y #  0 } )  /\  w  =  b )  ->  ( 1  /  w )  =  ( 1  /  b
) )
42 simpll1 1026 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( b  e.  CC  /\  b #  0  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  a  e.  {
y  e.  CC  | 
y #  0 } )  ->  b  e.  CC )
43 simpll2 1027 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( b  e.  CC  /\  b #  0  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  a  e.  {
y  e.  CC  | 
y #  0 } )  ->  b #  0 )
4426, 42, 43elrabd 2884 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( b  e.  CC  /\  b #  0  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  a  e.  {
y  e.  CC  | 
y #  0 } )  ->  b  e.  {
y  e.  CC  | 
y #  0 } )
4542, 43recclapd 8677 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( b  e.  CC  /\  b #  0  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  a  e.  {
y  e.  CC  | 
y #  0 } )  ->  ( 1  / 
b )  e.  CC )
4630, 41, 44, 45fvmptd 5567 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( b  e.  CC  /\  b #  0  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  a  e.  {
y  e.  CC  | 
y #  0 } )  ->  ( ( w  e.  { y  e.  CC  |  y #  0 }  |->  ( 1  /  w ) ) `  b )  =  ( 1  /  b ) )
4739, 46oveq12d 5860 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( b  e.  CC  /\  b #  0  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  a  e.  {
y  e.  CC  | 
y #  0 } )  ->  ( ( ( w  e.  { y  e.  CC  |  y #  0 }  |->  ( 1  /  w ) ) `
 a )  -  ( ( w  e. 
{ y  e.  CC  |  y #  0 }  |->  ( 1  /  w
) ) `  b
) )  =  ( ( 1  /  a
)  -  ( 1  /  b ) ) )
4847fveq2d 5490 . . . . . . . . . . . . . . 15  |-  ( ( ( ( b  e.  CC  /\  b #  0  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  a  e.  {
y  e.  CC  | 
y #  0 } )  ->  ( abs `  (
( ( w  e. 
{ y  e.  CC  |  y #  0 }  |->  ( 1  /  w
) ) `  a
)  -  ( ( w  e.  { y  e.  CC  |  y #  0 }  |->  ( 1  /  w ) ) `
 b ) ) )  =  ( abs `  ( ( 1  / 
a )  -  (
1  /  b ) ) ) )
4948breq1d 3992 . . . . . . . . . . . . . 14  |-  ( ( ( ( b  e.  CC  /\  b #  0  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  a  e.  {
y  e.  CC  | 
y #  0 } )  ->  ( ( abs `  ( ( ( w  e.  { y  e.  CC  |  y #  0 }  |->  ( 1  /  w ) ) `  a )  -  (
( w  e.  {
y  e.  CC  | 
y #  0 }  |->  ( 1  /  w ) ) `  b ) ) )  <  e  <->  ( abs `  ( ( 1  /  a )  -  ( 1  / 
b ) ) )  <  e ) )
5049imbi2d 229 . . . . . . . . . . . . 13  |-  ( ( ( ( b  e.  CC  /\  b #  0  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  a  e.  {
y  e.  CC  | 
y #  0 } )  ->  ( ( ( abs `  ( a  -  b ) )  <  d  ->  ( abs `  ( ( ( w  e.  { y  e.  CC  |  y #  0 }  |->  ( 1  /  w ) ) `
 a )  -  ( ( w  e. 
{ y  e.  CC  |  y #  0 }  |->  ( 1  /  w
) ) `  b
) ) )  < 
e )  <->  ( ( abs `  ( a  -  b ) )  < 
d  ->  ( abs `  ( ( 1  / 
a )  -  (
1  /  b ) ) )  <  e
) ) )
5150ralbidva 2462 . . . . . . . . . . . 12  |-  ( ( ( b  e.  CC  /\  b #  0  /\  e  e.  RR+ )  /\  d  e.  RR+ )  ->  ( A. a  e.  { y  e.  CC  |  y #  0 }  ( ( abs `  ( a  -  b ) )  <  d  ->  ( abs `  ( ( ( w  e.  { y  e.  CC  |  y #  0 }  |->  ( 1  /  w ) ) `
 a )  -  ( ( w  e. 
{ y  e.  CC  |  y #  0 }  |->  ( 1  /  w
) ) `  b
) ) )  < 
e )  <->  A. a  e.  { y  e.  CC  |  y #  0 } 
( ( abs `  (
a  -  b ) )  <  d  -> 
( abs `  (
( 1  /  a
)  -  ( 1  /  b ) ) )  <  e ) ) )
5251rexbidva 2463 . . . . . . . . . . 11  |-  ( ( b  e.  CC  /\  b #  0  /\  e  e.  RR+ )  ->  ( E. d  e.  RR+  A. a  e.  { y  e.  CC  |  y #  0 } 
( ( abs `  (
a  -  b ) )  <  d  -> 
( abs `  (
( ( w  e. 
{ y  e.  CC  |  y #  0 }  |->  ( 1  /  w
) ) `  a
)  -  ( ( w  e.  { y  e.  CC  |  y #  0 }  |->  ( 1  /  w ) ) `
 b ) ) )  <  e )  <->  E. d  e.  RR+  A. a  e.  { y  e.  CC  |  y #  0 } 
( ( abs `  (
a  -  b ) )  <  d  -> 
( abs `  (
( 1  /  a
)  -  ( 1  /  b ) ) )  <  e ) ) )
5329, 52mpbird 166 . . . . . . . . . 10  |-  ( ( b  e.  CC  /\  b #  0  /\  e  e.  RR+ )  ->  E. d  e.  RR+  A. a  e. 
{ y  e.  CC  |  y #  0 } 
( ( abs `  (
a  -  b ) )  <  d  -> 
( abs `  (
( ( w  e. 
{ y  e.  CC  |  y #  0 }  |->  ( 1  /  w
) ) `  a
)  -  ( ( w  e.  { y  e.  CC  |  y #  0 }  |->  ( 1  /  w ) ) `
 b ) ) )  <  e ) )
54533expa 1193 . . . . . . . . 9  |-  ( ( ( b  e.  CC  /\  b #  0 )  /\  e  e.  RR+ )  ->  E. d  e.  RR+  A. a  e.  { y  e.  CC  |  y #  0 } 
( ( abs `  (
a  -  b ) )  <  d  -> 
( abs `  (
( ( w  e. 
{ y  e.  CC  |  y #  0 }  |->  ( 1  /  w
) ) `  a
)  -  ( ( w  e.  { y  e.  CC  |  y #  0 }  |->  ( 1  /  w ) ) `
 b ) ) )  <  e ) )
5554ralrimiva 2539 . . . . . . . 8  |-  ( ( b  e.  CC  /\  b #  0 )  ->  A. e  e.  RR+  E. d  e.  RR+  A. a  e.  {
y  e.  CC  | 
y #  0 }  (
( abs `  (
a  -  b ) )  <  d  -> 
( abs `  (
( ( w  e. 
{ y  e.  CC  |  y #  0 }  |->  ( 1  /  w
) ) `  a
)  -  ( ( w  e.  { y  e.  CC  |  y #  0 }  |->  ( 1  /  w ) ) `
 b ) ) )  <  e ) )
5627, 55sylbi 120 . . . . . . 7  |-  ( b  e.  { y  e.  CC  |  y #  0 }  ->  A. e  e.  RR+  E. d  e.  RR+  A. a  e.  {
y  e.  CC  | 
y #  0 }  (
( abs `  (
a  -  b ) )  <  d  -> 
( abs `  (
( ( w  e. 
{ y  e.  CC  |  y #  0 }  |->  ( 1  /  w
) ) `  a
)  -  ( ( w  e.  { y  e.  CC  |  y #  0 }  |->  ( 1  /  w ) ) `
 b ) ) )  <  e ) )
5756rgen 2519 . . . . . 6  |-  A. b  e.  { y  e.  CC  |  y #  0 } A. e  e.  RR+  E. d  e.  RR+  A. a  e. 
{ y  e.  CC  |  y #  0 } 
( ( abs `  (
a  -  b ) )  <  d  -> 
( abs `  (
( ( w  e. 
{ y  e.  CC  |  y #  0 }  |->  ( 1  /  w
) ) `  a
)  -  ( ( w  e.  { y  e.  CC  |  y #  0 }  |->  ( 1  /  w ) ) `
 b ) ) )  <  e )
58 ssrab2 3227 . . . . . . 7  |-  { y  e.  CC  |  y #  0 }  C_  CC
59 ssid 3162 . . . . . . 7  |-  CC  C_  CC
60 elcncf2 13201 . . . . . . 7  |-  ( ( { y  e.  CC  |  y #  0 }  C_  CC  /\  CC  C_  CC )  ->  ( ( w  e.  { y  e.  CC  |  y #  0 }  |->  ( 1  /  w ) )  e.  ( { y  e.  CC  |  y #  0 } -cn-> CC )  <-> 
( ( w  e. 
{ y  e.  CC  |  y #  0 }  |->  ( 1  /  w
) ) : {
y  e.  CC  | 
y #  0 } --> CC  /\  A. b  e.  { y  e.  CC  |  y #  0 } A. e  e.  RR+  E. d  e.  RR+  A. a  e.  {
y  e.  CC  | 
y #  0 }  (
( abs `  (
a  -  b ) )  <  d  -> 
( abs `  (
( ( w  e. 
{ y  e.  CC  |  y #  0 }  |->  ( 1  /  w
) ) `  a
)  -  ( ( w  e.  { y  e.  CC  |  y #  0 }  |->  ( 1  /  w ) ) `
 b ) ) )  <  e ) ) ) )
6158, 59, 60mp2an 423 . . . . . 6  |-  ( ( w  e.  { y  e.  CC  |  y #  0 }  |->  ( 1  /  w ) )  e.  ( { y  e.  CC  |  y #  0 } -cn-> CC )  <-> 
( ( w  e. 
{ y  e.  CC  |  y #  0 }  |->  ( 1  /  w
) ) : {
y  e.  CC  | 
y #  0 } --> CC  /\  A. b  e.  { y  e.  CC  |  y #  0 } A. e  e.  RR+  E. d  e.  RR+  A. a  e.  {
y  e.  CC  | 
y #  0 }  (
( abs `  (
a  -  b ) )  <  d  -> 
( abs `  (
( ( w  e. 
{ y  e.  CC  |  y #  0 }  |->  ( 1  /  w
) ) `  a
)  -  ( ( w  e.  { y  e.  CC  |  y #  0 }  |->  ( 1  /  w ) ) `
 b ) ) )  <  e ) ) )
6225, 57, 61sylanblrc 413 . . . . 5  |-  ( A  e.  CC  ->  (
w  e.  { y  e.  CC  |  y #  0 }  |->  ( 1  /  w ) )  e.  ( { y  e.  CC  |  y #  0 } -cn-> CC ) )
63 eqid 2165 . . . . . 6  |-  ( z  e.  CC  |->  ( A  x.  z ) )  =  ( z  e.  CC  |->  ( A  x.  z ) )
6463mulc1cncf 13216 . . . . 5  |-  ( A  e.  CC  ->  (
z  e.  CC  |->  ( A  x.  z ) )  e.  ( CC
-cn-> CC ) )
6562, 64cncfco 13218 . . . 4  |-  ( A  e.  CC  ->  (
( z  e.  CC  |->  ( A  x.  z
) )  o.  (
w  e.  { y  e.  CC  |  y #  0 }  |->  ( 1  /  w ) ) )  e.  ( { y  e.  CC  | 
y #  0 } -cn-> CC ) )
6619, 65eqeltrrd 2244 . . 3  |-  ( A  e.  CC  ->  (
x  e.  { y  e.  CC  |  y #  0 }  |->  ( A  x.  ( 1  /  x ) ) )  e.  ( { y  e.  CC  |  y #  0 } -cn-> CC ) )
6710, 66eqeltrd 2243 . 2  |-  ( A  e.  CC  ->  (
x  e.  { y  e.  CC  |  y #  0 }  |->  ( A  /  x ) )  e.  ( { y  e.  CC  |  y #  0 } -cn-> CC ) )
681, 67eqeltrid 2253 1  |-  ( A  e.  CC  ->  F  e.  ( { y  e.  CC  |  y #  0 } -cn-> CC ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 968    = wceq 1343    e. wcel 2136   A.wral 2444   E.wrex 2445   {crab 2448    C_ wss 3116   {cpr 3577   class class class wbr 3982    |-> cmpt 4043    o. ccom 4608   -->wf 5184   ` cfv 5188  (class class class)co 5842  infcinf 6948   CCcc 7751   RRcr 7752   0cc0 7753   1c1 7754    x. cmul 7758    < clt 7933    - cmin 8069   # cap 8479    / cdiv 8568   2c2 8908   RR+crp 9589   abscabs 10939   -cn->ccncf 13197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-mulrcl 7852  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-precex 7863  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869  ax-pre-mulgt0 7870  ax-pre-mulext 7871  ax-arch 7872  ax-caucvg 7873
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-po 4274  df-iso 4275  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-isom 5197  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-frec 6359  df-map 6616  df-sup 6949  df-inf 6950  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-reap 8473  df-ap 8480  df-div 8569  df-inn 8858  df-2 8916  df-3 8917  df-4 8918  df-n0 9115  df-z 9192  df-uz 9467  df-rp 9590  df-seqfrec 10381  df-exp 10455  df-cj 10784  df-re 10785  df-im 10786  df-rsqrt 10940  df-abs 10941  df-cncf 13198
This theorem is referenced by:  dvrecap  13317
  Copyright terms: Public domain W3C validator