ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cdivcncfap Unicode version

Theorem cdivcncfap 14383
Description: Division with a constant numerator is continuous. (Contributed by Mario Carneiro, 28-Dec-2016.) (Revised by Jim Kingdon, 26-May-2023.)
Hypothesis
Ref Expression
cdivcncf.1  |-  F  =  ( x  e.  {
y  e.  CC  | 
y #  0 }  |->  ( A  /  x ) )
Assertion
Ref Expression
cdivcncfap  |-  ( A  e.  CC  ->  F  e.  ( { y  e.  CC  |  y #  0 } -cn-> CC ) )
Distinct variable group:    x, A, y
Allowed substitution hints:    F( x, y)

Proof of Theorem cdivcncfap
Dummy variables  w  z  a  b  d  e are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cdivcncf.1 . 2  |-  F  =  ( x  e.  {
y  e.  CC  | 
y #  0 }  |->  ( A  /  x ) )
2 simpl 109 . . . . 5  |-  ( ( A  e.  CC  /\  x  e.  { y  e.  CC  |  y #  0 } )  ->  A  e.  CC )
3 breq1 4018 . . . . . . . . 9  |-  ( y  =  x  ->  (
y #  0  <->  x #  0
) )
43elrab 2905 . . . . . . . 8  |-  ( x  e.  { y  e.  CC  |  y #  0 }  <->  ( x  e.  CC  /\  x #  0 ) )
54biimpi 120 . . . . . . 7  |-  ( x  e.  { y  e.  CC  |  y #  0 }  ->  ( x  e.  CC  /\  x #  0 ) )
65adantl 277 . . . . . 6  |-  ( ( A  e.  CC  /\  x  e.  { y  e.  CC  |  y #  0 } )  ->  (
x  e.  CC  /\  x #  0 ) )
76simpld 112 . . . . 5  |-  ( ( A  e.  CC  /\  x  e.  { y  e.  CC  |  y #  0 } )  ->  x  e.  CC )
86simprd 114 . . . . 5  |-  ( ( A  e.  CC  /\  x  e.  { y  e.  CC  |  y #  0 } )  ->  x #  0 )
92, 7, 8divrecapd 8764 . . . 4  |-  ( ( A  e.  CC  /\  x  e.  { y  e.  CC  |  y #  0 } )  ->  ( A  /  x )  =  ( A  x.  (
1  /  x ) ) )
109mpteq2dva 4105 . . 3  |-  ( A  e.  CC  ->  (
x  e.  { y  e.  CC  |  y #  0 }  |->  ( A  /  x ) )  =  ( x  e. 
{ y  e.  CC  |  y #  0 }  |->  ( A  x.  (
1  /  x ) ) ) )
11 recclap 8650 . . . . . . 7  |-  ( ( x  e.  CC  /\  x #  0 )  ->  (
1  /  x )  e.  CC )
124, 11sylbi 121 . . . . . 6  |-  ( x  e.  { y  e.  CC  |  y #  0 }  ->  ( 1  /  x )  e.  CC )
1312adantl 277 . . . . 5  |-  ( ( A  e.  CC  /\  x  e.  { y  e.  CC  |  y #  0 } )  ->  (
1  /  x )  e.  CC )
14 oveq2 5896 . . . . . . 7  |-  ( w  =  x  ->  (
1  /  w )  =  ( 1  /  x ) )
1514cbvmptv 4111 . . . . . 6  |-  ( w  e.  { y  e.  CC  |  y #  0 }  |->  ( 1  /  w ) )  =  ( x  e.  {
y  e.  CC  | 
y #  0 }  |->  ( 1  /  x ) )
1615a1i 9 . . . . 5  |-  ( A  e.  CC  ->  (
w  e.  { y  e.  CC  |  y #  0 }  |->  ( 1  /  w ) )  =  ( x  e. 
{ y  e.  CC  |  y #  0 }  |->  ( 1  /  x
) ) )
17 eqidd 2188 . . . . 5  |-  ( A  e.  CC  ->  (
z  e.  CC  |->  ( A  x.  z ) )  =  ( z  e.  CC  |->  ( A  x.  z ) ) )
18 oveq2 5896 . . . . 5  |-  ( z  =  ( 1  /  x )  ->  ( A  x.  z )  =  ( A  x.  ( 1  /  x
) ) )
1913, 16, 17, 18fmptco 5695 . . . 4  |-  ( A  e.  CC  ->  (
( z  e.  CC  |->  ( A  x.  z
) )  o.  (
w  e.  { y  e.  CC  |  y #  0 }  |->  ( 1  /  w ) ) )  =  ( x  e.  { y  e.  CC  |  y #  0 }  |->  ( A  x.  ( 1  /  x
) ) ) )
20 breq1 4018 . . . . . . . . . 10  |-  ( y  =  w  ->  (
y #  0  <->  w #  0
) )
2120elrab 2905 . . . . . . . . 9  |-  ( w  e.  { y  e.  CC  |  y #  0 }  <->  ( w  e.  CC  /\  w #  0 ) )
22 recclap 8650 . . . . . . . . 9  |-  ( ( w  e.  CC  /\  w #  0 )  ->  (
1  /  w )  e.  CC )
2321, 22sylbi 121 . . . . . . . 8  |-  ( w  e.  { y  e.  CC  |  y #  0 }  ->  ( 1  /  w )  e.  CC )
2423adantl 277 . . . . . . 7  |-  ( ( A  e.  CC  /\  w  e.  { y  e.  CC  |  y #  0 } )  ->  (
1  /  w )  e.  CC )
2524fmpttd 5684 . . . . . 6  |-  ( A  e.  CC  ->  (
w  e.  { y  e.  CC  |  y #  0 }  |->  ( 1  /  w ) ) : { y  e.  CC  |  y #  0 } --> CC )
26 breq1 4018 . . . . . . . . 9  |-  ( y  =  b  ->  (
y #  0  <->  b #  0
) )
2726elrab 2905 . . . . . . . 8  |-  ( b  e.  { y  e.  CC  |  y #  0 }  <->  ( b  e.  CC  /\  b #  0 ) )
28 eqid 2187 . . . . . . . . . . . 12  |-  (inf ( { 1 ,  ( ( abs `  b
)  x.  e ) } ,  RR ,  <  )  x.  ( ( abs `  b )  /  2 ) )  =  (inf ( { 1 ,  ( ( abs `  b )  x.  e ) } ,  RR ,  <  )  x.  ( ( abs `  b )  /  2
) )
2928reccn2ap 11335 . . . . . . . . . . 11  |-  ( ( b  e.  CC  /\  b #  0  /\  e  e.  RR+ )  ->  E. d  e.  RR+  A. a  e. 
{ y  e.  CC  |  y #  0 } 
( ( abs `  (
a  -  b ) )  <  d  -> 
( abs `  (
( 1  /  a
)  -  ( 1  /  b ) ) )  <  e ) )
30 eqidd 2188 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( b  e.  CC  /\  b #  0  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  a  e.  {
y  e.  CC  | 
y #  0 } )  ->  ( w  e. 
{ y  e.  CC  |  y #  0 }  |->  ( 1  /  w
) )  =  ( w  e.  { y  e.  CC  |  y #  0 }  |->  ( 1  /  w ) ) )
31 oveq2 5896 . . . . . . . . . . . . . . . . . . 19  |-  ( w  =  a  ->  (
1  /  w )  =  ( 1  / 
a ) )
3231adantl 277 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( b  e.  CC  /\  b #  0  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  a  e.  {
y  e.  CC  | 
y #  0 } )  /\  w  =  a )  ->  ( 1  /  w )  =  ( 1  /  a
) )
33 simpr 110 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( b  e.  CC  /\  b #  0  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  a  e.  {
y  e.  CC  | 
y #  0 } )  ->  a  e.  {
y  e.  CC  | 
y #  0 } )
34 breq1 4018 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  =  a  ->  (
y #  0  <->  a #  0
) )
3534elrab 2905 . . . . . . . . . . . . . . . . . . . 20  |-  ( a  e.  { y  e.  CC  |  y #  0 }  <->  ( a  e.  CC  /\  a #  0 ) )
36 recclap 8650 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( a  e.  CC  /\  a #  0 )  ->  (
1  /  a )  e.  CC )
3735, 36sylbi 121 . . . . . . . . . . . . . . . . . . 19  |-  ( a  e.  { y  e.  CC  |  y #  0 }  ->  ( 1  /  a )  e.  CC )
3837adantl 277 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( b  e.  CC  /\  b #  0  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  a  e.  {
y  e.  CC  | 
y #  0 } )  ->  ( 1  / 
a )  e.  CC )
3930, 32, 33, 38fvmptd 5610 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( b  e.  CC  /\  b #  0  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  a  e.  {
y  e.  CC  | 
y #  0 } )  ->  ( ( w  e.  { y  e.  CC  |  y #  0 }  |->  ( 1  /  w ) ) `  a )  =  ( 1  /  a ) )
40 oveq2 5896 . . . . . . . . . . . . . . . . . . 19  |-  ( w  =  b  ->  (
1  /  w )  =  ( 1  / 
b ) )
4140adantl 277 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( b  e.  CC  /\  b #  0  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  a  e.  {
y  e.  CC  | 
y #  0 } )  /\  w  =  b )  ->  ( 1  /  w )  =  ( 1  /  b
) )
42 simpll1 1037 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( b  e.  CC  /\  b #  0  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  a  e.  {
y  e.  CC  | 
y #  0 } )  ->  b  e.  CC )
43 simpll2 1038 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( b  e.  CC  /\  b #  0  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  a  e.  {
y  e.  CC  | 
y #  0 } )  ->  b #  0 )
4426, 42, 43elrabd 2907 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( b  e.  CC  /\  b #  0  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  a  e.  {
y  e.  CC  | 
y #  0 } )  ->  b  e.  {
y  e.  CC  | 
y #  0 } )
4542, 43recclapd 8752 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( b  e.  CC  /\  b #  0  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  a  e.  {
y  e.  CC  | 
y #  0 } )  ->  ( 1  / 
b )  e.  CC )
4630, 41, 44, 45fvmptd 5610 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( b  e.  CC  /\  b #  0  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  a  e.  {
y  e.  CC  | 
y #  0 } )  ->  ( ( w  e.  { y  e.  CC  |  y #  0 }  |->  ( 1  /  w ) ) `  b )  =  ( 1  /  b ) )
4739, 46oveq12d 5906 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( b  e.  CC  /\  b #  0  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  a  e.  {
y  e.  CC  | 
y #  0 } )  ->  ( ( ( w  e.  { y  e.  CC  |  y #  0 }  |->  ( 1  /  w ) ) `
 a )  -  ( ( w  e. 
{ y  e.  CC  |  y #  0 }  |->  ( 1  /  w
) ) `  b
) )  =  ( ( 1  /  a
)  -  ( 1  /  b ) ) )
4847fveq2d 5531 . . . . . . . . . . . . . . 15  |-  ( ( ( ( b  e.  CC  /\  b #  0  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  a  e.  {
y  e.  CC  | 
y #  0 } )  ->  ( abs `  (
( ( w  e. 
{ y  e.  CC  |  y #  0 }  |->  ( 1  /  w
) ) `  a
)  -  ( ( w  e.  { y  e.  CC  |  y #  0 }  |->  ( 1  /  w ) ) `
 b ) ) )  =  ( abs `  ( ( 1  / 
a )  -  (
1  /  b ) ) ) )
4948breq1d 4025 . . . . . . . . . . . . . 14  |-  ( ( ( ( b  e.  CC  /\  b #  0  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  a  e.  {
y  e.  CC  | 
y #  0 } )  ->  ( ( abs `  ( ( ( w  e.  { y  e.  CC  |  y #  0 }  |->  ( 1  /  w ) ) `  a )  -  (
( w  e.  {
y  e.  CC  | 
y #  0 }  |->  ( 1  /  w ) ) `  b ) ) )  <  e  <->  ( abs `  ( ( 1  /  a )  -  ( 1  / 
b ) ) )  <  e ) )
5049imbi2d 230 . . . . . . . . . . . . 13  |-  ( ( ( ( b  e.  CC  /\  b #  0  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  a  e.  {
y  e.  CC  | 
y #  0 } )  ->  ( ( ( abs `  ( a  -  b ) )  <  d  ->  ( abs `  ( ( ( w  e.  { y  e.  CC  |  y #  0 }  |->  ( 1  /  w ) ) `
 a )  -  ( ( w  e. 
{ y  e.  CC  |  y #  0 }  |->  ( 1  /  w
) ) `  b
) ) )  < 
e )  <->  ( ( abs `  ( a  -  b ) )  < 
d  ->  ( abs `  ( ( 1  / 
a )  -  (
1  /  b ) ) )  <  e
) ) )
5150ralbidva 2483 . . . . . . . . . . . 12  |-  ( ( ( b  e.  CC  /\  b #  0  /\  e  e.  RR+ )  /\  d  e.  RR+ )  ->  ( A. a  e.  { y  e.  CC  |  y #  0 }  ( ( abs `  ( a  -  b ) )  <  d  ->  ( abs `  ( ( ( w  e.  { y  e.  CC  |  y #  0 }  |->  ( 1  /  w ) ) `
 a )  -  ( ( w  e. 
{ y  e.  CC  |  y #  0 }  |->  ( 1  /  w
) ) `  b
) ) )  < 
e )  <->  A. a  e.  { y  e.  CC  |  y #  0 } 
( ( abs `  (
a  -  b ) )  <  d  -> 
( abs `  (
( 1  /  a
)  -  ( 1  /  b ) ) )  <  e ) ) )
5251rexbidva 2484 . . . . . . . . . . 11  |-  ( ( b  e.  CC  /\  b #  0  /\  e  e.  RR+ )  ->  ( E. d  e.  RR+  A. a  e.  { y  e.  CC  |  y #  0 } 
( ( abs `  (
a  -  b ) )  <  d  -> 
( abs `  (
( ( w  e. 
{ y  e.  CC  |  y #  0 }  |->  ( 1  /  w
) ) `  a
)  -  ( ( w  e.  { y  e.  CC  |  y #  0 }  |->  ( 1  /  w ) ) `
 b ) ) )  <  e )  <->  E. d  e.  RR+  A. a  e.  { y  e.  CC  |  y #  0 } 
( ( abs `  (
a  -  b ) )  <  d  -> 
( abs `  (
( 1  /  a
)  -  ( 1  /  b ) ) )  <  e ) ) )
5329, 52mpbird 167 . . . . . . . . . 10  |-  ( ( b  e.  CC  /\  b #  0  /\  e  e.  RR+ )  ->  E. d  e.  RR+  A. a  e. 
{ y  e.  CC  |  y #  0 } 
( ( abs `  (
a  -  b ) )  <  d  -> 
( abs `  (
( ( w  e. 
{ y  e.  CC  |  y #  0 }  |->  ( 1  /  w
) ) `  a
)  -  ( ( w  e.  { y  e.  CC  |  y #  0 }  |->  ( 1  /  w ) ) `
 b ) ) )  <  e ) )
54533expa 1204 . . . . . . . . 9  |-  ( ( ( b  e.  CC  /\  b #  0 )  /\  e  e.  RR+ )  ->  E. d  e.  RR+  A. a  e.  { y  e.  CC  |  y #  0 } 
( ( abs `  (
a  -  b ) )  <  d  -> 
( abs `  (
( ( w  e. 
{ y  e.  CC  |  y #  0 }  |->  ( 1  /  w
) ) `  a
)  -  ( ( w  e.  { y  e.  CC  |  y #  0 }  |->  ( 1  /  w ) ) `
 b ) ) )  <  e ) )
5554ralrimiva 2560 . . . . . . . 8  |-  ( ( b  e.  CC  /\  b #  0 )  ->  A. e  e.  RR+  E. d  e.  RR+  A. a  e.  {
y  e.  CC  | 
y #  0 }  (
( abs `  (
a  -  b ) )  <  d  -> 
( abs `  (
( ( w  e. 
{ y  e.  CC  |  y #  0 }  |->  ( 1  /  w
) ) `  a
)  -  ( ( w  e.  { y  e.  CC  |  y #  0 }  |->  ( 1  /  w ) ) `
 b ) ) )  <  e ) )
5627, 55sylbi 121 . . . . . . 7  |-  ( b  e.  { y  e.  CC  |  y #  0 }  ->  A. e  e.  RR+  E. d  e.  RR+  A. a  e.  {
y  e.  CC  | 
y #  0 }  (
( abs `  (
a  -  b ) )  <  d  -> 
( abs `  (
( ( w  e. 
{ y  e.  CC  |  y #  0 }  |->  ( 1  /  w
) ) `  a
)  -  ( ( w  e.  { y  e.  CC  |  y #  0 }  |->  ( 1  /  w ) ) `
 b ) ) )  <  e ) )
5756rgen 2540 . . . . . 6  |-  A. b  e.  { y  e.  CC  |  y #  0 } A. e  e.  RR+  E. d  e.  RR+  A. a  e. 
{ y  e.  CC  |  y #  0 } 
( ( abs `  (
a  -  b ) )  <  d  -> 
( abs `  (
( ( w  e. 
{ y  e.  CC  |  y #  0 }  |->  ( 1  /  w
) ) `  a
)  -  ( ( w  e.  { y  e.  CC  |  y #  0 }  |->  ( 1  /  w ) ) `
 b ) ) )  <  e )
58 ssrab2 3252 . . . . . . 7  |-  { y  e.  CC  |  y #  0 }  C_  CC
59 ssid 3187 . . . . . . 7  |-  CC  C_  CC
60 elcncf2 14357 . . . . . . 7  |-  ( ( { y  e.  CC  |  y #  0 }  C_  CC  /\  CC  C_  CC )  ->  ( ( w  e.  { y  e.  CC  |  y #  0 }  |->  ( 1  /  w ) )  e.  ( { y  e.  CC  |  y #  0 } -cn-> CC )  <-> 
( ( w  e. 
{ y  e.  CC  |  y #  0 }  |->  ( 1  /  w
) ) : {
y  e.  CC  | 
y #  0 } --> CC  /\  A. b  e.  { y  e.  CC  |  y #  0 } A. e  e.  RR+  E. d  e.  RR+  A. a  e.  {
y  e.  CC  | 
y #  0 }  (
( abs `  (
a  -  b ) )  <  d  -> 
( abs `  (
( ( w  e. 
{ y  e.  CC  |  y #  0 }  |->  ( 1  /  w
) ) `  a
)  -  ( ( w  e.  { y  e.  CC  |  y #  0 }  |->  ( 1  /  w ) ) `
 b ) ) )  <  e ) ) ) )
6158, 59, 60mp2an 426 . . . . . 6  |-  ( ( w  e.  { y  e.  CC  |  y #  0 }  |->  ( 1  /  w ) )  e.  ( { y  e.  CC  |  y #  0 } -cn-> CC )  <-> 
( ( w  e. 
{ y  e.  CC  |  y #  0 }  |->  ( 1  /  w
) ) : {
y  e.  CC  | 
y #  0 } --> CC  /\  A. b  e.  { y  e.  CC  |  y #  0 } A. e  e.  RR+  E. d  e.  RR+  A. a  e.  {
y  e.  CC  | 
y #  0 }  (
( abs `  (
a  -  b ) )  <  d  -> 
( abs `  (
( ( w  e. 
{ y  e.  CC  |  y #  0 }  |->  ( 1  /  w
) ) `  a
)  -  ( ( w  e.  { y  e.  CC  |  y #  0 }  |->  ( 1  /  w ) ) `
 b ) ) )  <  e ) ) )
6225, 57, 61sylanblrc 416 . . . . 5  |-  ( A  e.  CC  ->  (
w  e.  { y  e.  CC  |  y #  0 }  |->  ( 1  /  w ) )  e.  ( { y  e.  CC  |  y #  0 } -cn-> CC ) )
63 eqid 2187 . . . . . 6  |-  ( z  e.  CC  |->  ( A  x.  z ) )  =  ( z  e.  CC  |->  ( A  x.  z ) )
6463mulc1cncf 14372 . . . . 5  |-  ( A  e.  CC  ->  (
z  e.  CC  |->  ( A  x.  z ) )  e.  ( CC
-cn-> CC ) )
6562, 64cncfco 14374 . . . 4  |-  ( A  e.  CC  ->  (
( z  e.  CC  |->  ( A  x.  z
) )  o.  (
w  e.  { y  e.  CC  |  y #  0 }  |->  ( 1  /  w ) ) )  e.  ( { y  e.  CC  | 
y #  0 } -cn-> CC ) )
6619, 65eqeltrrd 2265 . . 3  |-  ( A  e.  CC  ->  (
x  e.  { y  e.  CC  |  y #  0 }  |->  ( A  x.  ( 1  /  x ) ) )  e.  ( { y  e.  CC  |  y #  0 } -cn-> CC ) )
6710, 66eqeltrd 2264 . 2  |-  ( A  e.  CC  ->  (
x  e.  { y  e.  CC  |  y #  0 }  |->  ( A  /  x ) )  e.  ( { y  e.  CC  |  y #  0 } -cn-> CC ) )
681, 67eqeltrid 2274 1  |-  ( A  e.  CC  ->  F  e.  ( { y  e.  CC  |  y #  0 } -cn-> CC ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 979    = wceq 1363    e. wcel 2158   A.wral 2465   E.wrex 2466   {crab 2469    C_ wss 3141   {cpr 3605   class class class wbr 4015    |-> cmpt 4076    o. ccom 4642   -->wf 5224   ` cfv 5228  (class class class)co 5888  infcinf 6996   CCcc 7823   RRcr 7824   0cc0 7825   1c1 7826    x. cmul 7830    < clt 8006    - cmin 8142   # cap 8552    / cdiv 8643   2c2 8984   RR+crp 9667   abscabs 11020   -cn->ccncf 14353
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445  ax-setind 4548  ax-iinf 4599  ax-cnex 7916  ax-resscn 7917  ax-1cn 7918  ax-1re 7919  ax-icn 7920  ax-addcl 7921  ax-addrcl 7922  ax-mulcl 7923  ax-mulrcl 7924  ax-addcom 7925  ax-mulcom 7926  ax-addass 7927  ax-mulass 7928  ax-distr 7929  ax-i2m1 7930  ax-0lt1 7931  ax-1rid 7932  ax-0id 7933  ax-rnegex 7934  ax-precex 7935  ax-cnre 7936  ax-pre-ltirr 7937  ax-pre-ltwlin 7938  ax-pre-lttrn 7939  ax-pre-apti 7940  ax-pre-ltadd 7941  ax-pre-mulgt0 7942  ax-pre-mulext 7943  ax-arch 7944  ax-caucvg 7945
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 980  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-nel 2453  df-ral 2470  df-rex 2471  df-reu 2472  df-rmo 2473  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-if 3547  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-id 4305  df-po 4308  df-iso 4309  df-iord 4378  df-on 4380  df-ilim 4381  df-suc 4383  df-iom 4602  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-isom 5237  df-riota 5844  df-ov 5891  df-oprab 5892  df-mpo 5893  df-1st 6155  df-2nd 6156  df-recs 6320  df-frec 6406  df-map 6664  df-sup 6997  df-inf 6998  df-pnf 8008  df-mnf 8009  df-xr 8010  df-ltxr 8011  df-le 8012  df-sub 8144  df-neg 8145  df-reap 8546  df-ap 8553  df-div 8644  df-inn 8934  df-2 8992  df-3 8993  df-4 8994  df-n0 9191  df-z 9268  df-uz 9543  df-rp 9668  df-seqfrec 10460  df-exp 10534  df-cj 10865  df-re 10866  df-im 10867  df-rsqrt 11021  df-abs 11022  df-cncf 14354
This theorem is referenced by:  dvrecap  14473
  Copyright terms: Public domain W3C validator