ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cdivcncfap Unicode version

Theorem cdivcncfap 14758
Description: Division with a constant numerator is continuous. (Contributed by Mario Carneiro, 28-Dec-2016.) (Revised by Jim Kingdon, 26-May-2023.)
Hypothesis
Ref Expression
cdivcncf.1  |-  F  =  ( x  e.  {
y  e.  CC  | 
y #  0 }  |->  ( A  /  x ) )
Assertion
Ref Expression
cdivcncfap  |-  ( A  e.  CC  ->  F  e.  ( { y  e.  CC  |  y #  0 } -cn-> CC ) )
Distinct variable group:    x, A, y
Allowed substitution hints:    F( x, y)

Proof of Theorem cdivcncfap
Dummy variables  w  z  a  b  d  e are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cdivcncf.1 . 2  |-  F  =  ( x  e.  {
y  e.  CC  | 
y #  0 }  |->  ( A  /  x ) )
2 simpl 109 . . . . 5  |-  ( ( A  e.  CC  /\  x  e.  { y  e.  CC  |  y #  0 } )  ->  A  e.  CC )
3 breq1 4032 . . . . . . . . 9  |-  ( y  =  x  ->  (
y #  0  <->  x #  0
) )
43elrab 2916 . . . . . . . 8  |-  ( x  e.  { y  e.  CC  |  y #  0 }  <->  ( x  e.  CC  /\  x #  0 ) )
54biimpi 120 . . . . . . 7  |-  ( x  e.  { y  e.  CC  |  y #  0 }  ->  ( x  e.  CC  /\  x #  0 ) )
65adantl 277 . . . . . 6  |-  ( ( A  e.  CC  /\  x  e.  { y  e.  CC  |  y #  0 } )  ->  (
x  e.  CC  /\  x #  0 ) )
76simpld 112 . . . . 5  |-  ( ( A  e.  CC  /\  x  e.  { y  e.  CC  |  y #  0 } )  ->  x  e.  CC )
86simprd 114 . . . . 5  |-  ( ( A  e.  CC  /\  x  e.  { y  e.  CC  |  y #  0 } )  ->  x #  0 )
92, 7, 8divrecapd 8812 . . . 4  |-  ( ( A  e.  CC  /\  x  e.  { y  e.  CC  |  y #  0 } )  ->  ( A  /  x )  =  ( A  x.  (
1  /  x ) ) )
109mpteq2dva 4119 . . 3  |-  ( A  e.  CC  ->  (
x  e.  { y  e.  CC  |  y #  0 }  |->  ( A  /  x ) )  =  ( x  e. 
{ y  e.  CC  |  y #  0 }  |->  ( A  x.  (
1  /  x ) ) ) )
11 recclap 8698 . . . . . . 7  |-  ( ( x  e.  CC  /\  x #  0 )  ->  (
1  /  x )  e.  CC )
124, 11sylbi 121 . . . . . 6  |-  ( x  e.  { y  e.  CC  |  y #  0 }  ->  ( 1  /  x )  e.  CC )
1312adantl 277 . . . . 5  |-  ( ( A  e.  CC  /\  x  e.  { y  e.  CC  |  y #  0 } )  ->  (
1  /  x )  e.  CC )
14 oveq2 5926 . . . . . . 7  |-  ( w  =  x  ->  (
1  /  w )  =  ( 1  /  x ) )
1514cbvmptv 4125 . . . . . 6  |-  ( w  e.  { y  e.  CC  |  y #  0 }  |->  ( 1  /  w ) )  =  ( x  e.  {
y  e.  CC  | 
y #  0 }  |->  ( 1  /  x ) )
1615a1i 9 . . . . 5  |-  ( A  e.  CC  ->  (
w  e.  { y  e.  CC  |  y #  0 }  |->  ( 1  /  w ) )  =  ( x  e. 
{ y  e.  CC  |  y #  0 }  |->  ( 1  /  x
) ) )
17 eqidd 2194 . . . . 5  |-  ( A  e.  CC  ->  (
z  e.  CC  |->  ( A  x.  z ) )  =  ( z  e.  CC  |->  ( A  x.  z ) ) )
18 oveq2 5926 . . . . 5  |-  ( z  =  ( 1  /  x )  ->  ( A  x.  z )  =  ( A  x.  ( 1  /  x
) ) )
1913, 16, 17, 18fmptco 5724 . . . 4  |-  ( A  e.  CC  ->  (
( z  e.  CC  |->  ( A  x.  z
) )  o.  (
w  e.  { y  e.  CC  |  y #  0 }  |->  ( 1  /  w ) ) )  =  ( x  e.  { y  e.  CC  |  y #  0 }  |->  ( A  x.  ( 1  /  x
) ) ) )
20 breq1 4032 . . . . . . . . . 10  |-  ( y  =  w  ->  (
y #  0  <->  w #  0
) )
2120elrab 2916 . . . . . . . . 9  |-  ( w  e.  { y  e.  CC  |  y #  0 }  <->  ( w  e.  CC  /\  w #  0 ) )
22 recclap 8698 . . . . . . . . 9  |-  ( ( w  e.  CC  /\  w #  0 )  ->  (
1  /  w )  e.  CC )
2321, 22sylbi 121 . . . . . . . 8  |-  ( w  e.  { y  e.  CC  |  y #  0 }  ->  ( 1  /  w )  e.  CC )
2423adantl 277 . . . . . . 7  |-  ( ( A  e.  CC  /\  w  e.  { y  e.  CC  |  y #  0 } )  ->  (
1  /  w )  e.  CC )
2524fmpttd 5713 . . . . . 6  |-  ( A  e.  CC  ->  (
w  e.  { y  e.  CC  |  y #  0 }  |->  ( 1  /  w ) ) : { y  e.  CC  |  y #  0 } --> CC )
26 breq1 4032 . . . . . . . . 9  |-  ( y  =  b  ->  (
y #  0  <->  b #  0
) )
2726elrab 2916 . . . . . . . 8  |-  ( b  e.  { y  e.  CC  |  y #  0 }  <->  ( b  e.  CC  /\  b #  0 ) )
28 eqid 2193 . . . . . . . . . . . 12  |-  (inf ( { 1 ,  ( ( abs `  b
)  x.  e ) } ,  RR ,  <  )  x.  ( ( abs `  b )  /  2 ) )  =  (inf ( { 1 ,  ( ( abs `  b )  x.  e ) } ,  RR ,  <  )  x.  ( ( abs `  b )  /  2
) )
2928reccn2ap 11456 . . . . . . . . . . 11  |-  ( ( b  e.  CC  /\  b #  0  /\  e  e.  RR+ )  ->  E. d  e.  RR+  A. a  e. 
{ y  e.  CC  |  y #  0 } 
( ( abs `  (
a  -  b ) )  <  d  -> 
( abs `  (
( 1  /  a
)  -  ( 1  /  b ) ) )  <  e ) )
30 eqidd 2194 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( b  e.  CC  /\  b #  0  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  a  e.  {
y  e.  CC  | 
y #  0 } )  ->  ( w  e. 
{ y  e.  CC  |  y #  0 }  |->  ( 1  /  w
) )  =  ( w  e.  { y  e.  CC  |  y #  0 }  |->  ( 1  /  w ) ) )
31 oveq2 5926 . . . . . . . . . . . . . . . . . . 19  |-  ( w  =  a  ->  (
1  /  w )  =  ( 1  / 
a ) )
3231adantl 277 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( b  e.  CC  /\  b #  0  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  a  e.  {
y  e.  CC  | 
y #  0 } )  /\  w  =  a )  ->  ( 1  /  w )  =  ( 1  /  a
) )
33 simpr 110 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( b  e.  CC  /\  b #  0  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  a  e.  {
y  e.  CC  | 
y #  0 } )  ->  a  e.  {
y  e.  CC  | 
y #  0 } )
34 breq1 4032 . . . . . . . . . . . . . . . . . . . . 21  |-  ( y  =  a  ->  (
y #  0  <->  a #  0
) )
3534elrab 2916 . . . . . . . . . . . . . . . . . . . 20  |-  ( a  e.  { y  e.  CC  |  y #  0 }  <->  ( a  e.  CC  /\  a #  0 ) )
36 recclap 8698 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( a  e.  CC  /\  a #  0 )  ->  (
1  /  a )  e.  CC )
3735, 36sylbi 121 . . . . . . . . . . . . . . . . . . 19  |-  ( a  e.  { y  e.  CC  |  y #  0 }  ->  ( 1  /  a )  e.  CC )
3837adantl 277 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( b  e.  CC  /\  b #  0  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  a  e.  {
y  e.  CC  | 
y #  0 } )  ->  ( 1  / 
a )  e.  CC )
3930, 32, 33, 38fvmptd 5638 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( b  e.  CC  /\  b #  0  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  a  e.  {
y  e.  CC  | 
y #  0 } )  ->  ( ( w  e.  { y  e.  CC  |  y #  0 }  |->  ( 1  /  w ) ) `  a )  =  ( 1  /  a ) )
40 oveq2 5926 . . . . . . . . . . . . . . . . . . 19  |-  ( w  =  b  ->  (
1  /  w )  =  ( 1  / 
b ) )
4140adantl 277 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( ( b  e.  CC  /\  b #  0  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  a  e.  {
y  e.  CC  | 
y #  0 } )  /\  w  =  b )  ->  ( 1  /  w )  =  ( 1  /  b
) )
42 simpll1 1038 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( b  e.  CC  /\  b #  0  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  a  e.  {
y  e.  CC  | 
y #  0 } )  ->  b  e.  CC )
43 simpll2 1039 . . . . . . . . . . . . . . . . . . 19  |-  ( ( ( ( b  e.  CC  /\  b #  0  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  a  e.  {
y  e.  CC  | 
y #  0 } )  ->  b #  0 )
4426, 42, 43elrabd 2918 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( b  e.  CC  /\  b #  0  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  a  e.  {
y  e.  CC  | 
y #  0 } )  ->  b  e.  {
y  e.  CC  | 
y #  0 } )
4542, 43recclapd 8800 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( ( b  e.  CC  /\  b #  0  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  a  e.  {
y  e.  CC  | 
y #  0 } )  ->  ( 1  / 
b )  e.  CC )
4630, 41, 44, 45fvmptd 5638 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( b  e.  CC  /\  b #  0  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  a  e.  {
y  e.  CC  | 
y #  0 } )  ->  ( ( w  e.  { y  e.  CC  |  y #  0 }  |->  ( 1  /  w ) ) `  b )  =  ( 1  /  b ) )
4739, 46oveq12d 5936 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( b  e.  CC  /\  b #  0  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  a  e.  {
y  e.  CC  | 
y #  0 } )  ->  ( ( ( w  e.  { y  e.  CC  |  y #  0 }  |->  ( 1  /  w ) ) `
 a )  -  ( ( w  e. 
{ y  e.  CC  |  y #  0 }  |->  ( 1  /  w
) ) `  b
) )  =  ( ( 1  /  a
)  -  ( 1  /  b ) ) )
4847fveq2d 5558 . . . . . . . . . . . . . . 15  |-  ( ( ( ( b  e.  CC  /\  b #  0  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  a  e.  {
y  e.  CC  | 
y #  0 } )  ->  ( abs `  (
( ( w  e. 
{ y  e.  CC  |  y #  0 }  |->  ( 1  /  w
) ) `  a
)  -  ( ( w  e.  { y  e.  CC  |  y #  0 }  |->  ( 1  /  w ) ) `
 b ) ) )  =  ( abs `  ( ( 1  / 
a )  -  (
1  /  b ) ) ) )
4948breq1d 4039 . . . . . . . . . . . . . 14  |-  ( ( ( ( b  e.  CC  /\  b #  0  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  a  e.  {
y  e.  CC  | 
y #  0 } )  ->  ( ( abs `  ( ( ( w  e.  { y  e.  CC  |  y #  0 }  |->  ( 1  /  w ) ) `  a )  -  (
( w  e.  {
y  e.  CC  | 
y #  0 }  |->  ( 1  /  w ) ) `  b ) ) )  <  e  <->  ( abs `  ( ( 1  /  a )  -  ( 1  / 
b ) ) )  <  e ) )
5049imbi2d 230 . . . . . . . . . . . . 13  |-  ( ( ( ( b  e.  CC  /\  b #  0  /\  e  e.  RR+ )  /\  d  e.  RR+ )  /\  a  e.  {
y  e.  CC  | 
y #  0 } )  ->  ( ( ( abs `  ( a  -  b ) )  <  d  ->  ( abs `  ( ( ( w  e.  { y  e.  CC  |  y #  0 }  |->  ( 1  /  w ) ) `
 a )  -  ( ( w  e. 
{ y  e.  CC  |  y #  0 }  |->  ( 1  /  w
) ) `  b
) ) )  < 
e )  <->  ( ( abs `  ( a  -  b ) )  < 
d  ->  ( abs `  ( ( 1  / 
a )  -  (
1  /  b ) ) )  <  e
) ) )
5150ralbidva 2490 . . . . . . . . . . . 12  |-  ( ( ( b  e.  CC  /\  b #  0  /\  e  e.  RR+ )  /\  d  e.  RR+ )  ->  ( A. a  e.  { y  e.  CC  |  y #  0 }  ( ( abs `  ( a  -  b ) )  <  d  ->  ( abs `  ( ( ( w  e.  { y  e.  CC  |  y #  0 }  |->  ( 1  /  w ) ) `
 a )  -  ( ( w  e. 
{ y  e.  CC  |  y #  0 }  |->  ( 1  /  w
) ) `  b
) ) )  < 
e )  <->  A. a  e.  { y  e.  CC  |  y #  0 } 
( ( abs `  (
a  -  b ) )  <  d  -> 
( abs `  (
( 1  /  a
)  -  ( 1  /  b ) ) )  <  e ) ) )
5251rexbidva 2491 . . . . . . . . . . 11  |-  ( ( b  e.  CC  /\  b #  0  /\  e  e.  RR+ )  ->  ( E. d  e.  RR+  A. a  e.  { y  e.  CC  |  y #  0 } 
( ( abs `  (
a  -  b ) )  <  d  -> 
( abs `  (
( ( w  e. 
{ y  e.  CC  |  y #  0 }  |->  ( 1  /  w
) ) `  a
)  -  ( ( w  e.  { y  e.  CC  |  y #  0 }  |->  ( 1  /  w ) ) `
 b ) ) )  <  e )  <->  E. d  e.  RR+  A. a  e.  { y  e.  CC  |  y #  0 } 
( ( abs `  (
a  -  b ) )  <  d  -> 
( abs `  (
( 1  /  a
)  -  ( 1  /  b ) ) )  <  e ) ) )
5329, 52mpbird 167 . . . . . . . . . 10  |-  ( ( b  e.  CC  /\  b #  0  /\  e  e.  RR+ )  ->  E. d  e.  RR+  A. a  e. 
{ y  e.  CC  |  y #  0 } 
( ( abs `  (
a  -  b ) )  <  d  -> 
( abs `  (
( ( w  e. 
{ y  e.  CC  |  y #  0 }  |->  ( 1  /  w
) ) `  a
)  -  ( ( w  e.  { y  e.  CC  |  y #  0 }  |->  ( 1  /  w ) ) `
 b ) ) )  <  e ) )
54533expa 1205 . . . . . . . . 9  |-  ( ( ( b  e.  CC  /\  b #  0 )  /\  e  e.  RR+ )  ->  E. d  e.  RR+  A. a  e.  { y  e.  CC  |  y #  0 } 
( ( abs `  (
a  -  b ) )  <  d  -> 
( abs `  (
( ( w  e. 
{ y  e.  CC  |  y #  0 }  |->  ( 1  /  w
) ) `  a
)  -  ( ( w  e.  { y  e.  CC  |  y #  0 }  |->  ( 1  /  w ) ) `
 b ) ) )  <  e ) )
5554ralrimiva 2567 . . . . . . . 8  |-  ( ( b  e.  CC  /\  b #  0 )  ->  A. e  e.  RR+  E. d  e.  RR+  A. a  e.  {
y  e.  CC  | 
y #  0 }  (
( abs `  (
a  -  b ) )  <  d  -> 
( abs `  (
( ( w  e. 
{ y  e.  CC  |  y #  0 }  |->  ( 1  /  w
) ) `  a
)  -  ( ( w  e.  { y  e.  CC  |  y #  0 }  |->  ( 1  /  w ) ) `
 b ) ) )  <  e ) )
5627, 55sylbi 121 . . . . . . 7  |-  ( b  e.  { y  e.  CC  |  y #  0 }  ->  A. e  e.  RR+  E. d  e.  RR+  A. a  e.  {
y  e.  CC  | 
y #  0 }  (
( abs `  (
a  -  b ) )  <  d  -> 
( abs `  (
( ( w  e. 
{ y  e.  CC  |  y #  0 }  |->  ( 1  /  w
) ) `  a
)  -  ( ( w  e.  { y  e.  CC  |  y #  0 }  |->  ( 1  /  w ) ) `
 b ) ) )  <  e ) )
5756rgen 2547 . . . . . 6  |-  A. b  e.  { y  e.  CC  |  y #  0 } A. e  e.  RR+  E. d  e.  RR+  A. a  e. 
{ y  e.  CC  |  y #  0 } 
( ( abs `  (
a  -  b ) )  <  d  -> 
( abs `  (
( ( w  e. 
{ y  e.  CC  |  y #  0 }  |->  ( 1  /  w
) ) `  a
)  -  ( ( w  e.  { y  e.  CC  |  y #  0 }  |->  ( 1  /  w ) ) `
 b ) ) )  <  e )
58 ssrab2 3264 . . . . . . 7  |-  { y  e.  CC  |  y #  0 }  C_  CC
59 ssid 3199 . . . . . . 7  |-  CC  C_  CC
60 elcncf2 14729 . . . . . . 7  |-  ( ( { y  e.  CC  |  y #  0 }  C_  CC  /\  CC  C_  CC )  ->  ( ( w  e.  { y  e.  CC  |  y #  0 }  |->  ( 1  /  w ) )  e.  ( { y  e.  CC  |  y #  0 } -cn-> CC )  <-> 
( ( w  e. 
{ y  e.  CC  |  y #  0 }  |->  ( 1  /  w
) ) : {
y  e.  CC  | 
y #  0 } --> CC  /\  A. b  e.  { y  e.  CC  |  y #  0 } A. e  e.  RR+  E. d  e.  RR+  A. a  e.  {
y  e.  CC  | 
y #  0 }  (
( abs `  (
a  -  b ) )  <  d  -> 
( abs `  (
( ( w  e. 
{ y  e.  CC  |  y #  0 }  |->  ( 1  /  w
) ) `  a
)  -  ( ( w  e.  { y  e.  CC  |  y #  0 }  |->  ( 1  /  w ) ) `
 b ) ) )  <  e ) ) ) )
6158, 59, 60mp2an 426 . . . . . 6  |-  ( ( w  e.  { y  e.  CC  |  y #  0 }  |->  ( 1  /  w ) )  e.  ( { y  e.  CC  |  y #  0 } -cn-> CC )  <-> 
( ( w  e. 
{ y  e.  CC  |  y #  0 }  |->  ( 1  /  w
) ) : {
y  e.  CC  | 
y #  0 } --> CC  /\  A. b  e.  { y  e.  CC  |  y #  0 } A. e  e.  RR+  E. d  e.  RR+  A. a  e.  {
y  e.  CC  | 
y #  0 }  (
( abs `  (
a  -  b ) )  <  d  -> 
( abs `  (
( ( w  e. 
{ y  e.  CC  |  y #  0 }  |->  ( 1  /  w
) ) `  a
)  -  ( ( w  e.  { y  e.  CC  |  y #  0 }  |->  ( 1  /  w ) ) `
 b ) ) )  <  e ) ) )
6225, 57, 61sylanblrc 416 . . . . 5  |-  ( A  e.  CC  ->  (
w  e.  { y  e.  CC  |  y #  0 }  |->  ( 1  /  w ) )  e.  ( { y  e.  CC  |  y #  0 } -cn-> CC ) )
63 eqid 2193 . . . . . 6  |-  ( z  e.  CC  |->  ( A  x.  z ) )  =  ( z  e.  CC  |->  ( A  x.  z ) )
6463mulc1cncf 14744 . . . . 5  |-  ( A  e.  CC  ->  (
z  e.  CC  |->  ( A  x.  z ) )  e.  ( CC
-cn-> CC ) )
6562, 64cncfco 14746 . . . 4  |-  ( A  e.  CC  ->  (
( z  e.  CC  |->  ( A  x.  z
) )  o.  (
w  e.  { y  e.  CC  |  y #  0 }  |->  ( 1  /  w ) ) )  e.  ( { y  e.  CC  | 
y #  0 } -cn-> CC ) )
6619, 65eqeltrrd 2271 . . 3  |-  ( A  e.  CC  ->  (
x  e.  { y  e.  CC  |  y #  0 }  |->  ( A  x.  ( 1  /  x ) ) )  e.  ( { y  e.  CC  |  y #  0 } -cn-> CC ) )
6710, 66eqeltrd 2270 . 2  |-  ( A  e.  CC  ->  (
x  e.  { y  e.  CC  |  y #  0 }  |->  ( A  /  x ) )  e.  ( { y  e.  CC  |  y #  0 } -cn-> CC ) )
681, 67eqeltrid 2280 1  |-  ( A  e.  CC  ->  F  e.  ( { y  e.  CC  |  y #  0 } -cn-> CC ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2164   A.wral 2472   E.wrex 2473   {crab 2476    C_ wss 3153   {cpr 3619   class class class wbr 4029    |-> cmpt 4090    o. ccom 4663   -->wf 5250   ` cfv 5254  (class class class)co 5918  infcinf 7042   CCcc 7870   RRcr 7871   0cc0 7872   1c1 7873    x. cmul 7877    < clt 8054    - cmin 8190   # cap 8600    / cdiv 8691   2c2 9033   RR+crp 9719   abscabs 11141   -cn->ccncf 14725
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569  ax-iinf 4620  ax-cnex 7963  ax-resscn 7964  ax-1cn 7965  ax-1re 7966  ax-icn 7967  ax-addcl 7968  ax-addrcl 7969  ax-mulcl 7970  ax-mulrcl 7971  ax-addcom 7972  ax-mulcom 7973  ax-addass 7974  ax-mulass 7975  ax-distr 7976  ax-i2m1 7977  ax-0lt1 7978  ax-1rid 7979  ax-0id 7980  ax-rnegex 7981  ax-precex 7982  ax-cnre 7983  ax-pre-ltirr 7984  ax-pre-ltwlin 7985  ax-pre-lttrn 7986  ax-pre-apti 7987  ax-pre-ltadd 7988  ax-pre-mulgt0 7989  ax-pre-mulext 7990  ax-arch 7991  ax-caucvg 7992
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-nel 2460  df-ral 2477  df-rex 2478  df-reu 2479  df-rmo 2480  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-if 3558  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-po 4327  df-iso 4328  df-iord 4397  df-on 4399  df-ilim 4400  df-suc 4402  df-iom 4623  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-isom 5263  df-riota 5873  df-ov 5921  df-oprab 5922  df-mpo 5923  df-1st 6193  df-2nd 6194  df-recs 6358  df-frec 6444  df-map 6704  df-sup 7043  df-inf 7044  df-pnf 8056  df-mnf 8057  df-xr 8058  df-ltxr 8059  df-le 8060  df-sub 8192  df-neg 8193  df-reap 8594  df-ap 8601  df-div 8692  df-inn 8983  df-2 9041  df-3 9042  df-4 9043  df-n0 9241  df-z 9318  df-uz 9593  df-rp 9720  df-seqfrec 10519  df-exp 10610  df-cj 10986  df-re 10987  df-im 10988  df-rsqrt 11142  df-abs 11143  df-cncf 14726
This theorem is referenced by:  divcncfap  14768  dvrecap  14862
  Copyright terms: Public domain W3C validator