ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashun Unicode version

Theorem hashun 10679
Description: The size of the union of disjoint finite sets is the sum of their sizes. (Contributed by Paul Chapman, 30-Nov-2012.) (Revised by Mario Carneiro, 15-Sep-2013.)
Assertion
Ref Expression
hashun  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  ->  ( `  ( A  u.  B )
)  =  ( ( `  A )  +  ( `  B ) ) )

Proof of Theorem hashun
Dummy variables  m  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfi 6706 . . . 4  |-  ( A  e.  Fin  <->  E. n  e.  om  A  ~~  n
)
21biimpi 119 . . 3  |-  ( A  e.  Fin  ->  E. n  e.  om  A  ~~  n
)
323ad2ant1 1003 . 2  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  ->  E. n  e.  om  A  ~~  n
)
4 isfi 6706 . . . . . 6  |-  ( B  e.  Fin  <->  E. m  e.  om  B  ~~  m
)
54biimpi 119 . . . . 5  |-  ( B  e.  Fin  ->  E. m  e.  om  B  ~~  m
)
653ad2ant2 1004 . . . 4  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  ->  E. m  e.  om  B  ~~  m
)
76adantr 274 . . 3  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  (
n  e.  om  /\  A  ~~  n ) )  ->  E. m  e.  om  B  ~~  m )
8 simplrl 525 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  ->  n  e.  om )
9 simprl 521 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  ->  m  e.  om )
10 eqid 2157 . . . . . . 7  |- frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  = frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )
1110omgadd 10676 . . . . . 6  |-  ( ( n  e.  om  /\  m  e.  om )  ->  (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 ) `  ( n  +o  m
) )  =  ( (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 ) `  n )  +  (frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 ) `  m
) ) )
128, 9, 11syl2anc 409 . . . . 5  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  -> 
(frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 ) `  ( n  +o  m
) )  =  ( (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 ) `  n )  +  (frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 ) `  m
) ) )
13 nnacl 6427 . . . . . . 7  |-  ( ( n  e.  om  /\  m  e.  om )  ->  ( n  +o  m
)  e.  om )
148, 9, 13syl2anc 409 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  -> 
( n  +o  m
)  e.  om )
15 enrefg 6709 . . . . . . 7  |-  ( ( n  +o  m )  e.  om  ->  (
n  +o  m ) 
~~  ( n  +o  m ) )
1614, 15syl 14 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  -> 
( n  +o  m
)  ~~  ( n  +o  m ) )
17 hashennn 10654 . . . . . 6  |-  ( ( ( n  +o  m
)  e.  om  /\  ( n  +o  m
)  ~~  ( n  +o  m ) )  -> 
( `  ( n  +o  m ) )  =  (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 ) `  ( n  +o  m
) ) )
1814, 16, 17syl2anc 409 . . . . 5  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  -> 
( `  ( n  +o  m ) )  =  (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 ) `  ( n  +o  m
) ) )
19 vex 2715 . . . . . . . 8  |-  n  e. 
_V
2019enref 6710 . . . . . . 7  |-  n  ~~  n
21 hashennn 10654 . . . . . . 7  |-  ( ( n  e.  om  /\  n  ~~  n )  -> 
( `  n )  =  (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 ) `  n ) )
228, 20, 21sylancl 410 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  -> 
( `  n )  =  (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 ) `  n ) )
23 vex 2715 . . . . . . . 8  |-  m  e. 
_V
2423enref 6710 . . . . . . 7  |-  m  ~~  m
25 hashennn 10654 . . . . . . 7  |-  ( ( m  e.  om  /\  m  ~~  m )  -> 
( `  m )  =  (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 ) `  m ) )
269, 24, 25sylancl 410 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  -> 
( `  m )  =  (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 ) `  m ) )
2722, 26oveq12d 5842 . . . . 5  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  -> 
( ( `  n
)  +  ( `  m
) )  =  ( (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 ) `  n )  +  (frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 ) `  m
) ) )
2812, 18, 273eqtr4d 2200 . . . 4  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  -> 
( `  ( n  +o  m ) )  =  ( ( `  n
)  +  ( `  m
) ) )
29 simpll1 1021 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  ->  A  e.  Fin )
30 simpll2 1022 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  ->  B  e.  Fin )
31 simpll3 1023 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  -> 
( A  i^i  B
)  =  (/) )
32 simplrr 526 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  ->  A  ~~  n )
33 simprr 522 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  ->  B  ~~  m )
3429, 30, 31, 8, 9, 32, 33hashunlem 10678 . . . . 5  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  -> 
( A  u.  B
)  ~~  ( n  +o  m ) )
35 unfidisj 6866 . . . . . . 7  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  ->  ( A  u.  B )  e. 
Fin )
3635ad2antrr 480 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  -> 
( A  u.  B
)  e.  Fin )
37 nnfi 6817 . . . . . . . 8  |-  ( ( n  +o  m )  e.  om  ->  (
n  +o  m )  e.  Fin )
3813, 37syl 14 . . . . . . 7  |-  ( ( n  e.  om  /\  m  e.  om )  ->  ( n  +o  m
)  e.  Fin )
398, 9, 38syl2anc 409 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  -> 
( n  +o  m
)  e.  Fin )
40 hashen 10658 . . . . . 6  |-  ( ( ( A  u.  B
)  e.  Fin  /\  ( n  +o  m
)  e.  Fin )  ->  ( ( `  ( A  u.  B )
)  =  ( `  (
n  +o  m ) )  <->  ( A  u.  B )  ~~  (
n  +o  m ) ) )
4136, 39, 40syl2anc 409 . . . . 5  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  -> 
( ( `  ( A  u.  B )
)  =  ( `  (
n  +o  m ) )  <->  ( A  u.  B )  ~~  (
n  +o  m ) ) )
4234, 41mpbird 166 . . . 4  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  -> 
( `  ( A  u.  B ) )  =  ( `  ( n  +o  m ) ) )
43 nnfi 6817 . . . . . . . 8  |-  ( n  e.  om  ->  n  e.  Fin )
448, 43syl 14 . . . . . . 7  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  ->  n  e.  Fin )
45 hashen 10658 . . . . . . 7  |-  ( ( A  e.  Fin  /\  n  e.  Fin )  ->  ( ( `  A
)  =  ( `  n
)  <->  A  ~~  n ) )
4629, 44, 45syl2anc 409 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  -> 
( ( `  A
)  =  ( `  n
)  <->  A  ~~  n ) )
4732, 46mpbird 166 . . . . 5  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  -> 
( `  A )  =  ( `  n )
)
48 nnfi 6817 . . . . . . . 8  |-  ( m  e.  om  ->  m  e.  Fin )
499, 48syl 14 . . . . . . 7  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  ->  m  e.  Fin )
50 hashen 10658 . . . . . . 7  |-  ( ( B  e.  Fin  /\  m  e.  Fin )  ->  ( ( `  B
)  =  ( `  m
)  <->  B  ~~  m ) )
5130, 49, 50syl2anc 409 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  -> 
( ( `  B
)  =  ( `  m
)  <->  B  ~~  m ) )
5233, 51mpbird 166 . . . . 5  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  -> 
( `  B )  =  ( `  m )
)
5347, 52oveq12d 5842 . . . 4  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  -> 
( ( `  A
)  +  ( `  B
) )  =  ( ( `  n )  +  ( `  m )
) )
5428, 42, 533eqtr4d 2200 . . 3  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  -> 
( `  ( A  u.  B ) )  =  ( ( `  A
)  +  ( `  B
) ) )
557, 54rexlimddv 2579 . 2  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  (
n  e.  om  /\  A  ~~  n ) )  ->  ( `  ( A  u.  B ) )  =  ( ( `  A
)  +  ( `  B
) ) )
563, 55rexlimddv 2579 1  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  ->  ( `  ( A  u.  B )
)  =  ( ( `  A )  +  ( `  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 963    = wceq 1335    e. wcel 2128   E.wrex 2436    u. cun 3100    i^i cin 3101   (/)c0 3394   class class class wbr 3965    |-> cmpt 4025   omcom 4549   ` cfv 5170  (class class class)co 5824  freccfrec 6337    +o coa 6360    ~~ cen 6683   Fincfn 6685   0cc0 7732   1c1 7733    + caddc 7735   ZZcz 9167  ♯chash 10649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4496  ax-iinf 4547  ax-cnex 7823  ax-resscn 7824  ax-1cn 7825  ax-1re 7826  ax-icn 7827  ax-addcl 7828  ax-addrcl 7829  ax-mulcl 7830  ax-addcom 7832  ax-addass 7834  ax-distr 7836  ax-i2m1 7837  ax-0lt1 7838  ax-0id 7840  ax-rnegex 7841  ax-cnre 7843  ax-pre-ltirr 7844  ax-pre-ltwlin 7845  ax-pre-lttrn 7846  ax-pre-ltadd 7848
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-id 4253  df-iord 4326  df-on 4328  df-ilim 4329  df-suc 4331  df-iom 4550  df-xp 4592  df-rel 4593  df-cnv 4594  df-co 4595  df-dm 4596  df-rn 4597  df-res 4598  df-ima 4599  df-iota 5135  df-fun 5172  df-fn 5173  df-f 5174  df-f1 5175  df-fo 5176  df-f1o 5177  df-fv 5178  df-riota 5780  df-ov 5827  df-oprab 5828  df-mpo 5829  df-1st 6088  df-2nd 6089  df-recs 6252  df-irdg 6317  df-frec 6338  df-1o 6363  df-oadd 6367  df-er 6480  df-en 6686  df-dom 6687  df-fin 6688  df-pnf 7914  df-mnf 7915  df-xr 7916  df-ltxr 7917  df-le 7918  df-sub 8048  df-neg 8049  df-inn 8834  df-n0 9091  df-z 9168  df-uz 9440  df-ihash 10650
This theorem is referenced by:  hashunsng  10681  fihashssdif  10692  hashxp  10700  fsumconst  11351  phiprmpw  12097
  Copyright terms: Public domain W3C validator