ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashun Unicode version

Theorem hashun 10950
Description: The size of the union of disjoint finite sets is the sum of their sizes. (Contributed by Paul Chapman, 30-Nov-2012.) (Revised by Mario Carneiro, 15-Sep-2013.)
Assertion
Ref Expression
hashun  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  ->  ( `  ( A  u.  B )
)  =  ( ( `  A )  +  ( `  B ) ) )

Proof of Theorem hashun
Dummy variables  m  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfi 6852 . . . 4  |-  ( A  e.  Fin  <->  E. n  e.  om  A  ~~  n
)
21biimpi 120 . . 3  |-  ( A  e.  Fin  ->  E. n  e.  om  A  ~~  n
)
323ad2ant1 1021 . 2  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  ->  E. n  e.  om  A  ~~  n
)
4 isfi 6852 . . . . . 6  |-  ( B  e.  Fin  <->  E. m  e.  om  B  ~~  m
)
54biimpi 120 . . . . 5  |-  ( B  e.  Fin  ->  E. m  e.  om  B  ~~  m
)
653ad2ant2 1022 . . . 4  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  ->  E. m  e.  om  B  ~~  m
)
76adantr 276 . . 3  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  (
n  e.  om  /\  A  ~~  n ) )  ->  E. m  e.  om  B  ~~  m )
8 simplrl 535 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  ->  n  e.  om )
9 simprl 529 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  ->  m  e.  om )
10 eqid 2205 . . . . . . 7  |- frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  = frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )
1110omgadd 10947 . . . . . 6  |-  ( ( n  e.  om  /\  m  e.  om )  ->  (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 ) `  ( n  +o  m
) )  =  ( (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 ) `  n )  +  (frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 ) `  m
) ) )
128, 9, 11syl2anc 411 . . . . 5  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  -> 
(frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 ) `  ( n  +o  m
) )  =  ( (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 ) `  n )  +  (frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 ) `  m
) ) )
13 nnacl 6566 . . . . . . 7  |-  ( ( n  e.  om  /\  m  e.  om )  ->  ( n  +o  m
)  e.  om )
148, 9, 13syl2anc 411 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  -> 
( n  +o  m
)  e.  om )
15 enrefg 6855 . . . . . . 7  |-  ( ( n  +o  m )  e.  om  ->  (
n  +o  m ) 
~~  ( n  +o  m ) )
1614, 15syl 14 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  -> 
( n  +o  m
)  ~~  ( n  +o  m ) )
17 hashennn 10925 . . . . . 6  |-  ( ( ( n  +o  m
)  e.  om  /\  ( n  +o  m
)  ~~  ( n  +o  m ) )  -> 
( `  ( n  +o  m ) )  =  (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 ) `  ( n  +o  m
) ) )
1814, 16, 17syl2anc 411 . . . . 5  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  -> 
( `  ( n  +o  m ) )  =  (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 ) `  ( n  +o  m
) ) )
19 vex 2775 . . . . . . . 8  |-  n  e. 
_V
2019enref 6856 . . . . . . 7  |-  n  ~~  n
21 hashennn 10925 . . . . . . 7  |-  ( ( n  e.  om  /\  n  ~~  n )  -> 
( `  n )  =  (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 ) `  n ) )
228, 20, 21sylancl 413 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  -> 
( `  n )  =  (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 ) `  n ) )
23 vex 2775 . . . . . . . 8  |-  m  e. 
_V
2423enref 6856 . . . . . . 7  |-  m  ~~  m
25 hashennn 10925 . . . . . . 7  |-  ( ( m  e.  om  /\  m  ~~  m )  -> 
( `  m )  =  (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 ) `  m ) )
269, 24, 25sylancl 413 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  -> 
( `  m )  =  (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 ) `  m ) )
2722, 26oveq12d 5962 . . . . 5  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  -> 
( ( `  n
)  +  ( `  m
) )  =  ( (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 ) `  n )  +  (frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 ) `  m
) ) )
2812, 18, 273eqtr4d 2248 . . . 4  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  -> 
( `  ( n  +o  m ) )  =  ( ( `  n
)  +  ( `  m
) ) )
29 simpll1 1039 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  ->  A  e.  Fin )
30 simpll2 1040 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  ->  B  e.  Fin )
31 simpll3 1041 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  -> 
( A  i^i  B
)  =  (/) )
32 simplrr 536 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  ->  A  ~~  n )
33 simprr 531 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  ->  B  ~~  m )
3429, 30, 31, 8, 9, 32, 33hashunlem 10949 . . . . 5  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  -> 
( A  u.  B
)  ~~  ( n  +o  m ) )
35 unfidisj 7019 . . . . . . 7  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  ->  ( A  u.  B )  e. 
Fin )
3635ad2antrr 488 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  -> 
( A  u.  B
)  e.  Fin )
37 nnfi 6969 . . . . . . . 8  |-  ( ( n  +o  m )  e.  om  ->  (
n  +o  m )  e.  Fin )
3813, 37syl 14 . . . . . . 7  |-  ( ( n  e.  om  /\  m  e.  om )  ->  ( n  +o  m
)  e.  Fin )
398, 9, 38syl2anc 411 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  -> 
( n  +o  m
)  e.  Fin )
40 hashen 10929 . . . . . 6  |-  ( ( ( A  u.  B
)  e.  Fin  /\  ( n  +o  m
)  e.  Fin )  ->  ( ( `  ( A  u.  B )
)  =  ( `  (
n  +o  m ) )  <->  ( A  u.  B )  ~~  (
n  +o  m ) ) )
4136, 39, 40syl2anc 411 . . . . 5  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  -> 
( ( `  ( A  u.  B )
)  =  ( `  (
n  +o  m ) )  <->  ( A  u.  B )  ~~  (
n  +o  m ) ) )
4234, 41mpbird 167 . . . 4  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  -> 
( `  ( A  u.  B ) )  =  ( `  ( n  +o  m ) ) )
43 nnfi 6969 . . . . . . . 8  |-  ( n  e.  om  ->  n  e.  Fin )
448, 43syl 14 . . . . . . 7  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  ->  n  e.  Fin )
45 hashen 10929 . . . . . . 7  |-  ( ( A  e.  Fin  /\  n  e.  Fin )  ->  ( ( `  A
)  =  ( `  n
)  <->  A  ~~  n ) )
4629, 44, 45syl2anc 411 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  -> 
( ( `  A
)  =  ( `  n
)  <->  A  ~~  n ) )
4732, 46mpbird 167 . . . . 5  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  -> 
( `  A )  =  ( `  n )
)
48 nnfi 6969 . . . . . . . 8  |-  ( m  e.  om  ->  m  e.  Fin )
499, 48syl 14 . . . . . . 7  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  ->  m  e.  Fin )
50 hashen 10929 . . . . . . 7  |-  ( ( B  e.  Fin  /\  m  e.  Fin )  ->  ( ( `  B
)  =  ( `  m
)  <->  B  ~~  m ) )
5130, 49, 50syl2anc 411 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  -> 
( ( `  B
)  =  ( `  m
)  <->  B  ~~  m ) )
5233, 51mpbird 167 . . . . 5  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  -> 
( `  B )  =  ( `  m )
)
5347, 52oveq12d 5962 . . . 4  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  -> 
( ( `  A
)  +  ( `  B
) )  =  ( ( `  n )  +  ( `  m )
) )
5428, 42, 533eqtr4d 2248 . . 3  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  -> 
( `  ( A  u.  B ) )  =  ( ( `  A
)  +  ( `  B
) ) )
557, 54rexlimddv 2628 . 2  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  (
n  e.  om  /\  A  ~~  n ) )  ->  ( `  ( A  u.  B ) )  =  ( ( `  A
)  +  ( `  B
) ) )
563, 55rexlimddv 2628 1  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  ->  ( `  ( A  u.  B )
)  =  ( ( `  A )  +  ( `  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 981    = wceq 1373    e. wcel 2176   E.wrex 2485    u. cun 3164    i^i cin 3165   (/)c0 3460   class class class wbr 4044    |-> cmpt 4105   omcom 4638   ` cfv 5271  (class class class)co 5944  freccfrec 6476    +o coa 6499    ~~ cen 6825   Fincfn 6827   0cc0 7925   1c1 7926    + caddc 7928   ZZcz 9372  ♯chash 10920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-coll 4159  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-iinf 4636  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-addass 8027  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-0id 8033  ax-rnegex 8034  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-ltadd 8041
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-if 3572  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-tr 4143  df-id 4340  df-iord 4413  df-on 4415  df-ilim 4416  df-suc 4418  df-iom 4639  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-recs 6391  df-irdg 6456  df-frec 6477  df-1o 6502  df-oadd 6506  df-er 6620  df-en 6828  df-dom 6829  df-fin 6830  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-inn 9037  df-n0 9296  df-z 9373  df-uz 9649  df-ihash 10921
This theorem is referenced by:  hashunsng  10952  fihashssdif  10963  hashxp  10971  fsumconst  11765  phiprmpw  12544  4sqlem11  12724  lgsquadlem2  15555  lgsquadlem3  15556
  Copyright terms: Public domain W3C validator