ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashun Unicode version

Theorem hashun 10897
Description: The size of the union of disjoint finite sets is the sum of their sizes. (Contributed by Paul Chapman, 30-Nov-2012.) (Revised by Mario Carneiro, 15-Sep-2013.)
Assertion
Ref Expression
hashun  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  ->  ( `  ( A  u.  B )
)  =  ( ( `  A )  +  ( `  B ) ) )

Proof of Theorem hashun
Dummy variables  m  n  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfi 6820 . . . 4  |-  ( A  e.  Fin  <->  E. n  e.  om  A  ~~  n
)
21biimpi 120 . . 3  |-  ( A  e.  Fin  ->  E. n  e.  om  A  ~~  n
)
323ad2ant1 1020 . 2  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  ->  E. n  e.  om  A  ~~  n
)
4 isfi 6820 . . . . . 6  |-  ( B  e.  Fin  <->  E. m  e.  om  B  ~~  m
)
54biimpi 120 . . . . 5  |-  ( B  e.  Fin  ->  E. m  e.  om  B  ~~  m
)
653ad2ant2 1021 . . . 4  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  ->  E. m  e.  om  B  ~~  m
)
76adantr 276 . . 3  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  (
n  e.  om  /\  A  ~~  n ) )  ->  E. m  e.  om  B  ~~  m )
8 simplrl 535 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  ->  n  e.  om )
9 simprl 529 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  ->  m  e.  om )
10 eqid 2196 . . . . . . 7  |- frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )  = frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 )
1110omgadd 10894 . . . . . 6  |-  ( ( n  e.  om  /\  m  e.  om )  ->  (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 ) `  ( n  +o  m
) )  =  ( (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 ) `  n )  +  (frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 ) `  m
) ) )
128, 9, 11syl2anc 411 . . . . 5  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  -> 
(frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 ) `  ( n  +o  m
) )  =  ( (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 ) `  n )  +  (frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 ) `  m
) ) )
13 nnacl 6538 . . . . . . 7  |-  ( ( n  e.  om  /\  m  e.  om )  ->  ( n  +o  m
)  e.  om )
148, 9, 13syl2anc 411 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  -> 
( n  +o  m
)  e.  om )
15 enrefg 6823 . . . . . . 7  |-  ( ( n  +o  m )  e.  om  ->  (
n  +o  m ) 
~~  ( n  +o  m ) )
1614, 15syl 14 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  -> 
( n  +o  m
)  ~~  ( n  +o  m ) )
17 hashennn 10872 . . . . . 6  |-  ( ( ( n  +o  m
)  e.  om  /\  ( n  +o  m
)  ~~  ( n  +o  m ) )  -> 
( `  ( n  +o  m ) )  =  (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 ) `  ( n  +o  m
) ) )
1814, 16, 17syl2anc 411 . . . . 5  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  -> 
( `  ( n  +o  m ) )  =  (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 ) `  ( n  +o  m
) ) )
19 vex 2766 . . . . . . . 8  |-  n  e. 
_V
2019enref 6824 . . . . . . 7  |-  n  ~~  n
21 hashennn 10872 . . . . . . 7  |-  ( ( n  e.  om  /\  n  ~~  n )  -> 
( `  n )  =  (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 ) `  n ) )
228, 20, 21sylancl 413 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  -> 
( `  n )  =  (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 ) `  n ) )
23 vex 2766 . . . . . . . 8  |-  m  e. 
_V
2423enref 6824 . . . . . . 7  |-  m  ~~  m
25 hashennn 10872 . . . . . . 7  |-  ( ( m  e.  om  /\  m  ~~  m )  -> 
( `  m )  =  (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 ) `  m ) )
269, 24, 25sylancl 413 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  -> 
( `  m )  =  (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 ) `  m ) )
2722, 26oveq12d 5940 . . . . 5  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  -> 
( ( `  n
)  +  ( `  m
) )  =  ( (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  0 ) `  n )  +  (frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  0 ) `  m
) ) )
2812, 18, 273eqtr4d 2239 . . . 4  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  -> 
( `  ( n  +o  m ) )  =  ( ( `  n
)  +  ( `  m
) ) )
29 simpll1 1038 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  ->  A  e.  Fin )
30 simpll2 1039 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  ->  B  e.  Fin )
31 simpll3 1040 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  -> 
( A  i^i  B
)  =  (/) )
32 simplrr 536 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  ->  A  ~~  n )
33 simprr 531 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  ->  B  ~~  m )
3429, 30, 31, 8, 9, 32, 33hashunlem 10896 . . . . 5  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  -> 
( A  u.  B
)  ~~  ( n  +o  m ) )
35 unfidisj 6983 . . . . . . 7  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  ->  ( A  u.  B )  e. 
Fin )
3635ad2antrr 488 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  -> 
( A  u.  B
)  e.  Fin )
37 nnfi 6933 . . . . . . . 8  |-  ( ( n  +o  m )  e.  om  ->  (
n  +o  m )  e.  Fin )
3813, 37syl 14 . . . . . . 7  |-  ( ( n  e.  om  /\  m  e.  om )  ->  ( n  +o  m
)  e.  Fin )
398, 9, 38syl2anc 411 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  -> 
( n  +o  m
)  e.  Fin )
40 hashen 10876 . . . . . 6  |-  ( ( ( A  u.  B
)  e.  Fin  /\  ( n  +o  m
)  e.  Fin )  ->  ( ( `  ( A  u.  B )
)  =  ( `  (
n  +o  m ) )  <->  ( A  u.  B )  ~~  (
n  +o  m ) ) )
4136, 39, 40syl2anc 411 . . . . 5  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  -> 
( ( `  ( A  u.  B )
)  =  ( `  (
n  +o  m ) )  <->  ( A  u.  B )  ~~  (
n  +o  m ) ) )
4234, 41mpbird 167 . . . 4  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  -> 
( `  ( A  u.  B ) )  =  ( `  ( n  +o  m ) ) )
43 nnfi 6933 . . . . . . . 8  |-  ( n  e.  om  ->  n  e.  Fin )
448, 43syl 14 . . . . . . 7  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  ->  n  e.  Fin )
45 hashen 10876 . . . . . . 7  |-  ( ( A  e.  Fin  /\  n  e.  Fin )  ->  ( ( `  A
)  =  ( `  n
)  <->  A  ~~  n ) )
4629, 44, 45syl2anc 411 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  -> 
( ( `  A
)  =  ( `  n
)  <->  A  ~~  n ) )
4732, 46mpbird 167 . . . . 5  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  -> 
( `  A )  =  ( `  n )
)
48 nnfi 6933 . . . . . . . 8  |-  ( m  e.  om  ->  m  e.  Fin )
499, 48syl 14 . . . . . . 7  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  ->  m  e.  Fin )
50 hashen 10876 . . . . . . 7  |-  ( ( B  e.  Fin  /\  m  e.  Fin )  ->  ( ( `  B
)  =  ( `  m
)  <->  B  ~~  m ) )
5130, 49, 50syl2anc 411 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  -> 
( ( `  B
)  =  ( `  m
)  <->  B  ~~  m ) )
5233, 51mpbird 167 . . . . 5  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  -> 
( `  B )  =  ( `  m )
)
5347, 52oveq12d 5940 . . . 4  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  -> 
( ( `  A
)  +  ( `  B
) )  =  ( ( `  n )  +  ( `  m )
) )
5428, 42, 533eqtr4d 2239 . . 3  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  ( m  e.  om  /\  B  ~~  m ) )  -> 
( `  ( A  u.  B ) )  =  ( ( `  A
)  +  ( `  B
) ) )
557, 54rexlimddv 2619 . 2  |-  ( ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  /\  (
n  e.  om  /\  A  ~~  n ) )  ->  ( `  ( A  u.  B ) )  =  ( ( `  A
)  +  ( `  B
) ) )
563, 55rexlimddv 2619 1  |-  ( ( A  e.  Fin  /\  B  e.  Fin  /\  ( A  i^i  B )  =  (/) )  ->  ( `  ( A  u.  B )
)  =  ( ( `  A )  +  ( `  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    /\ w3a 980    = wceq 1364    e. wcel 2167   E.wrex 2476    u. cun 3155    i^i cin 3156   (/)c0 3450   class class class wbr 4033    |-> cmpt 4094   omcom 4626   ` cfv 5258  (class class class)co 5922  freccfrec 6448    +o coa 6471    ~~ cen 6797   Fincfn 6799   0cc0 7879   1c1 7880    + caddc 7882   ZZcz 9326  ♯chash 10867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573  ax-iinf 4624  ax-cnex 7970  ax-resscn 7971  ax-1cn 7972  ax-1re 7973  ax-icn 7974  ax-addcl 7975  ax-addrcl 7976  ax-mulcl 7977  ax-addcom 7979  ax-addass 7981  ax-distr 7983  ax-i2m1 7984  ax-0lt1 7985  ax-0id 7987  ax-rnegex 7988  ax-cnre 7990  ax-pre-ltirr 7991  ax-pre-ltwlin 7992  ax-pre-lttrn 7993  ax-pre-ltadd 7995
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-if 3562  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-iun 3918  df-br 4034  df-opab 4095  df-mpt 4096  df-tr 4132  df-id 4328  df-iord 4401  df-on 4403  df-ilim 4404  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-riota 5877  df-ov 5925  df-oprab 5926  df-mpo 5927  df-1st 6198  df-2nd 6199  df-recs 6363  df-irdg 6428  df-frec 6449  df-1o 6474  df-oadd 6478  df-er 6592  df-en 6800  df-dom 6801  df-fin 6802  df-pnf 8063  df-mnf 8064  df-xr 8065  df-ltxr 8066  df-le 8067  df-sub 8199  df-neg 8200  df-inn 8991  df-n0 9250  df-z 9327  df-uz 9602  df-ihash 10868
This theorem is referenced by:  hashunsng  10899  fihashssdif  10910  hashxp  10918  fsumconst  11619  phiprmpw  12390  4sqlem11  12570  lgsquadlem2  15319  lgsquadlem3  15320
  Copyright terms: Public domain W3C validator