| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > hashun | Unicode version | ||
| Description: The size of the union of disjoint finite sets is the sum of their sizes. (Contributed by Paul Chapman, 30-Nov-2012.) (Revised by Mario Carneiro, 15-Sep-2013.) |
| Ref | Expression |
|---|---|
| hashun |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfi 6851 |
. . . 4
| |
| 2 | 1 | biimpi 120 |
. . 3
|
| 3 | 2 | 3ad2ant1 1020 |
. 2
|
| 4 | isfi 6851 |
. . . . . 6
| |
| 5 | 4 | biimpi 120 |
. . . . 5
|
| 6 | 5 | 3ad2ant2 1021 |
. . . 4
|
| 7 | 6 | adantr 276 |
. . 3
|
| 8 | simplrl 535 |
. . . . . 6
| |
| 9 | simprl 529 |
. . . . . 6
| |
| 10 | eqid 2204 |
. . . . . . 7
| |
| 11 | 10 | omgadd 10945 |
. . . . . 6
|
| 12 | 8, 9, 11 | syl2anc 411 |
. . . . 5
|
| 13 | nnacl 6565 |
. . . . . . 7
| |
| 14 | 8, 9, 13 | syl2anc 411 |
. . . . . 6
|
| 15 | enrefg 6854 |
. . . . . . 7
| |
| 16 | 14, 15 | syl 14 |
. . . . . 6
|
| 17 | hashennn 10923 |
. . . . . 6
| |
| 18 | 14, 16, 17 | syl2anc 411 |
. . . . 5
|
| 19 | vex 2774 |
. . . . . . . 8
| |
| 20 | 19 | enref 6855 |
. . . . . . 7
|
| 21 | hashennn 10923 |
. . . . . . 7
| |
| 22 | 8, 20, 21 | sylancl 413 |
. . . . . 6
|
| 23 | vex 2774 |
. . . . . . . 8
| |
| 24 | 23 | enref 6855 |
. . . . . . 7
|
| 25 | hashennn 10923 |
. . . . . . 7
| |
| 26 | 9, 24, 25 | sylancl 413 |
. . . . . 6
|
| 27 | 22, 26 | oveq12d 5961 |
. . . . 5
|
| 28 | 12, 18, 27 | 3eqtr4d 2247 |
. . . 4
|
| 29 | simpll1 1038 |
. . . . . 6
| |
| 30 | simpll2 1039 |
. . . . . 6
| |
| 31 | simpll3 1040 |
. . . . . 6
| |
| 32 | simplrr 536 |
. . . . . 6
| |
| 33 | simprr 531 |
. . . . . 6
| |
| 34 | 29, 30, 31, 8, 9, 32, 33 | hashunlem 10947 |
. . . . 5
|
| 35 | unfidisj 7018 |
. . . . . . 7
| |
| 36 | 35 | ad2antrr 488 |
. . . . . 6
|
| 37 | nnfi 6968 |
. . . . . . . 8
| |
| 38 | 13, 37 | syl 14 |
. . . . . . 7
|
| 39 | 8, 9, 38 | syl2anc 411 |
. . . . . 6
|
| 40 | hashen 10927 |
. . . . . 6
| |
| 41 | 36, 39, 40 | syl2anc 411 |
. . . . 5
|
| 42 | 34, 41 | mpbird 167 |
. . . 4
|
| 43 | nnfi 6968 |
. . . . . . . 8
| |
| 44 | 8, 43 | syl 14 |
. . . . . . 7
|
| 45 | hashen 10927 |
. . . . . . 7
| |
| 46 | 29, 44, 45 | syl2anc 411 |
. . . . . 6
|
| 47 | 32, 46 | mpbird 167 |
. . . . 5
|
| 48 | nnfi 6968 |
. . . . . . . 8
| |
| 49 | 9, 48 | syl 14 |
. . . . . . 7
|
| 50 | hashen 10927 |
. . . . . . 7
| |
| 51 | 30, 49, 50 | syl2anc 411 |
. . . . . 6
|
| 52 | 33, 51 | mpbird 167 |
. . . . 5
|
| 53 | 47, 52 | oveq12d 5961 |
. . . 4
|
| 54 | 28, 42, 53 | 3eqtr4d 2247 |
. . 3
|
| 55 | 7, 54 | rexlimddv 2627 |
. 2
|
| 56 | 3, 55 | rexlimddv 2627 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-iinf 4635 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-addcom 8024 ax-addass 8026 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-0id 8032 ax-rnegex 8033 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-ltadd 8040 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-id 4339 df-iord 4412 df-on 4414 df-ilim 4415 df-suc 4417 df-iom 4638 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-f1 5275 df-fo 5276 df-f1o 5277 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-1st 6225 df-2nd 6226 df-recs 6390 df-irdg 6455 df-frec 6476 df-1o 6501 df-oadd 6505 df-er 6619 df-en 6827 df-dom 6828 df-fin 6829 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-inn 9036 df-n0 9295 df-z 9372 df-uz 9648 df-ihash 10919 |
| This theorem is referenced by: hashunsng 10950 fihashssdif 10961 hashxp 10969 fsumconst 11707 phiprmpw 12486 4sqlem11 12666 lgsquadlem2 15497 lgsquadlem3 15498 |
| Copyright terms: Public domain | W3C validator |