ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  discld Unicode version

Theorem discld 14810
Description: The open sets of a discrete topology are closed and its closed sets are open. (Contributed by FL, 7-Jun-2007.) (Revised by Mario Carneiro, 7-Apr-2015.)
Assertion
Ref Expression
discld  |-  ( A  e.  V  ->  ( Clsd `  ~P A )  =  ~P A )

Proof of Theorem discld
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 distop 14759 . . . . 5  |-  ( A  e.  V  ->  ~P A  e.  Top )
2 unipw 4303 . . . . . . 7  |-  U. ~P A  =  A
32eqcomi 2233 . . . . . 6  |-  A  = 
U. ~P A
43iscld 14777 . . . . 5  |-  ( ~P A  e.  Top  ->  ( x  e.  ( Clsd `  ~P A )  <->  ( x  C_  A  /\  ( A 
\  x )  e. 
~P A ) ) )
51, 4syl 14 . . . 4  |-  ( A  e.  V  ->  (
x  e.  ( Clsd `  ~P A )  <->  ( x  C_  A  /\  ( A 
\  x )  e. 
~P A ) ) )
6 difss 3330 . . . . . 6  |-  ( A 
\  x )  C_  A
7 elpw2g 4240 . . . . . 6  |-  ( A  e.  V  ->  (
( A  \  x
)  e.  ~P A  <->  ( A  \  x ) 
C_  A ) )
86, 7mpbiri 168 . . . . 5  |-  ( A  e.  V  ->  ( A  \  x )  e. 
~P A )
98biantrud 304 . . . 4  |-  ( A  e.  V  ->  (
x  C_  A  <->  ( x  C_  A  /\  ( A 
\  x )  e. 
~P A ) ) )
105, 9bitr4d 191 . . 3  |-  ( A  e.  V  ->  (
x  e.  ( Clsd `  ~P A )  <->  x  C_  A
) )
11 velpw 3656 . . 3  |-  ( x  e.  ~P A  <->  x  C_  A
)
1210, 11bitr4di 198 . 2  |-  ( A  e.  V  ->  (
x  e.  ( Clsd `  ~P A )  <->  x  e.  ~P A ) )
1312eqrdv 2227 1  |-  ( A  e.  V  ->  ( Clsd `  ~P A )  =  ~P A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1395    e. wcel 2200    \ cdif 3194    C_ wss 3197   ~Pcpw 3649   U.cuni 3888   ` cfv 5318   Topctop 14671   Clsdccld 14766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-top 14672  df-cld 14769
This theorem is referenced by:  sn0cld  14811
  Copyright terms: Public domain W3C validator