ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  discld Unicode version

Theorem discld 14456
Description: The open sets of a discrete topology are closed and its closed sets are open. (Contributed by FL, 7-Jun-2007.) (Revised by Mario Carneiro, 7-Apr-2015.)
Assertion
Ref Expression
discld  |-  ( A  e.  V  ->  ( Clsd `  ~P A )  =  ~P A )

Proof of Theorem discld
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 distop 14405 . . . . 5  |-  ( A  e.  V  ->  ~P A  e.  Top )
2 unipw 4251 . . . . . . 7  |-  U. ~P A  =  A
32eqcomi 2200 . . . . . 6  |-  A  = 
U. ~P A
43iscld 14423 . . . . 5  |-  ( ~P A  e.  Top  ->  ( x  e.  ( Clsd `  ~P A )  <->  ( x  C_  A  /\  ( A 
\  x )  e. 
~P A ) ) )
51, 4syl 14 . . . 4  |-  ( A  e.  V  ->  (
x  e.  ( Clsd `  ~P A )  <->  ( x  C_  A  /\  ( A 
\  x )  e. 
~P A ) ) )
6 difss 3290 . . . . . 6  |-  ( A 
\  x )  C_  A
7 elpw2g 4190 . . . . . 6  |-  ( A  e.  V  ->  (
( A  \  x
)  e.  ~P A  <->  ( A  \  x ) 
C_  A ) )
86, 7mpbiri 168 . . . . 5  |-  ( A  e.  V  ->  ( A  \  x )  e. 
~P A )
98biantrud 304 . . . 4  |-  ( A  e.  V  ->  (
x  C_  A  <->  ( x  C_  A  /\  ( A 
\  x )  e. 
~P A ) ) )
105, 9bitr4d 191 . . 3  |-  ( A  e.  V  ->  (
x  e.  ( Clsd `  ~P A )  <->  x  C_  A
) )
11 velpw 3613 . . 3  |-  ( x  e.  ~P A  <->  x  C_  A
)
1210, 11bitr4di 198 . 2  |-  ( A  e.  V  ->  (
x  e.  ( Clsd `  ~P A )  <->  x  e.  ~P A ) )
1312eqrdv 2194 1  |-  ( A  e.  V  ->  ( Clsd `  ~P A )  =  ~P A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167    \ cdif 3154    C_ wss 3157   ~Pcpw 3606   U.cuni 3840   ` cfv 5259   Topctop 14317   Clsdccld 14412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-iota 5220  df-fun 5261  df-fv 5267  df-top 14318  df-cld 14415
This theorem is referenced by:  sn0cld  14457
  Copyright terms: Public domain W3C validator