| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > discld | Unicode version | ||
| Description: The open sets of a discrete topology are closed and its closed sets are open. (Contributed by FL, 7-Jun-2007.) (Revised by Mario Carneiro, 7-Apr-2015.) | 
| Ref | Expression | 
|---|---|
| discld | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | distop 14321 | 
. . . . 5
 | |
| 2 | unipw 4250 | 
. . . . . . 7
 | |
| 3 | 2 | eqcomi 2200 | 
. . . . . 6
 | 
| 4 | 3 | iscld 14339 | 
. . . . 5
 | 
| 5 | 1, 4 | syl 14 | 
. . . 4
 | 
| 6 | difss 3289 | 
. . . . . 6
 | |
| 7 | elpw2g 4189 | 
. . . . . 6
 | |
| 8 | 6, 7 | mpbiri 168 | 
. . . . 5
 | 
| 9 | 8 | biantrud 304 | 
. . . 4
 | 
| 10 | 5, 9 | bitr4d 191 | 
. . 3
 | 
| 11 | velpw 3612 | 
. . 3
 | |
| 12 | 10, 11 | bitr4di 198 | 
. 2
 | 
| 13 | 12 | eqrdv 2194 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-iota 5219 df-fun 5260 df-fv 5266 df-top 14234 df-cld 14331 | 
| This theorem is referenced by: sn0cld 14373 | 
| Copyright terms: Public domain | W3C validator |