ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  discld Unicode version

Theorem discld 12776
Description: The open sets of a discrete topology are closed and its closed sets are open. (Contributed by FL, 7-Jun-2007.) (Revised by Mario Carneiro, 7-Apr-2015.)
Assertion
Ref Expression
discld  |-  ( A  e.  V  ->  ( Clsd `  ~P A )  =  ~P A )

Proof of Theorem discld
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 distop 12725 . . . . 5  |-  ( A  e.  V  ->  ~P A  e.  Top )
2 unipw 4195 . . . . . . 7  |-  U. ~P A  =  A
32eqcomi 2169 . . . . . 6  |-  A  = 
U. ~P A
43iscld 12743 . . . . 5  |-  ( ~P A  e.  Top  ->  ( x  e.  ( Clsd `  ~P A )  <->  ( x  C_  A  /\  ( A 
\  x )  e. 
~P A ) ) )
51, 4syl 14 . . . 4  |-  ( A  e.  V  ->  (
x  e.  ( Clsd `  ~P A )  <->  ( x  C_  A  /\  ( A 
\  x )  e. 
~P A ) ) )
6 difss 3248 . . . . . 6  |-  ( A 
\  x )  C_  A
7 elpw2g 4135 . . . . . 6  |-  ( A  e.  V  ->  (
( A  \  x
)  e.  ~P A  <->  ( A  \  x ) 
C_  A ) )
86, 7mpbiri 167 . . . . 5  |-  ( A  e.  V  ->  ( A  \  x )  e. 
~P A )
98biantrud 302 . . . 4  |-  ( A  e.  V  ->  (
x  C_  A  <->  ( x  C_  A  /\  ( A 
\  x )  e. 
~P A ) ) )
105, 9bitr4d 190 . . 3  |-  ( A  e.  V  ->  (
x  e.  ( Clsd `  ~P A )  <->  x  C_  A
) )
11 velpw 3566 . . 3  |-  ( x  e.  ~P A  <->  x  C_  A
)
1210, 11bitr4di 197 . 2  |-  ( A  e.  V  ->  (
x  e.  ( Clsd `  ~P A )  <->  x  e.  ~P A ) )
1312eqrdv 2163 1  |-  ( A  e.  V  ->  ( Clsd `  ~P A )  =  ~P A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343    e. wcel 2136    \ cdif 3113    C_ wss 3116   ~Pcpw 3559   U.cuni 3789   ` cfv 5188   Topctop 12635   Clsdccld 12732
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-iota 5153  df-fun 5190  df-fv 5196  df-top 12636  df-cld 12735
This theorem is referenced by:  sn0cld  12777
  Copyright terms: Public domain W3C validator