ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  discld Unicode version

Theorem discld 14608
Description: The open sets of a discrete topology are closed and its closed sets are open. (Contributed by FL, 7-Jun-2007.) (Revised by Mario Carneiro, 7-Apr-2015.)
Assertion
Ref Expression
discld  |-  ( A  e.  V  ->  ( Clsd `  ~P A )  =  ~P A )

Proof of Theorem discld
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 distop 14557 . . . . 5  |-  ( A  e.  V  ->  ~P A  e.  Top )
2 unipw 4261 . . . . . . 7  |-  U. ~P A  =  A
32eqcomi 2209 . . . . . 6  |-  A  = 
U. ~P A
43iscld 14575 . . . . 5  |-  ( ~P A  e.  Top  ->  ( x  e.  ( Clsd `  ~P A )  <->  ( x  C_  A  /\  ( A 
\  x )  e. 
~P A ) ) )
51, 4syl 14 . . . 4  |-  ( A  e.  V  ->  (
x  e.  ( Clsd `  ~P A )  <->  ( x  C_  A  /\  ( A 
\  x )  e. 
~P A ) ) )
6 difss 3299 . . . . . 6  |-  ( A 
\  x )  C_  A
7 elpw2g 4200 . . . . . 6  |-  ( A  e.  V  ->  (
( A  \  x
)  e.  ~P A  <->  ( A  \  x ) 
C_  A ) )
86, 7mpbiri 168 . . . . 5  |-  ( A  e.  V  ->  ( A  \  x )  e. 
~P A )
98biantrud 304 . . . 4  |-  ( A  e.  V  ->  (
x  C_  A  <->  ( x  C_  A  /\  ( A 
\  x )  e. 
~P A ) ) )
105, 9bitr4d 191 . . 3  |-  ( A  e.  V  ->  (
x  e.  ( Clsd `  ~P A )  <->  x  C_  A
) )
11 velpw 3623 . . 3  |-  ( x  e.  ~P A  <->  x  C_  A
)
1210, 11bitr4di 198 . 2  |-  ( A  e.  V  ->  (
x  e.  ( Clsd `  ~P A )  <->  x  e.  ~P A ) )
1312eqrdv 2203 1  |-  ( A  e.  V  ->  ( Clsd `  ~P A )  =  ~P A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176    \ cdif 3163    C_ wss 3166   ~Pcpw 3616   U.cuni 3850   ` cfv 5271   Topctop 14469   Clsdccld 14564
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-iota 5232  df-fun 5273  df-fv 5279  df-top 14470  df-cld 14567
This theorem is referenced by:  sn0cld  14609
  Copyright terms: Public domain W3C validator