ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  lspsnid Unicode version

Theorem lspsnid 14039
Description: A vector belongs to the span of its singleton. (Contributed by NM, 9-Apr-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lspsnid.v  |-  V  =  ( Base `  W
)
lspsnid.n  |-  N  =  ( LSpan `  W )
Assertion
Ref Expression
lspsnid  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  X  e.  ( N `  { X } ) )

Proof of Theorem lspsnid
StepHypRef Expression
1 snssi 3767 . . 3  |-  ( X  e.  V  ->  { X }  C_  V )
2 lspsnid.v . . . 4  |-  V  =  ( Base `  W
)
3 lspsnid.n . . . 4  |-  N  =  ( LSpan `  W )
42, 3lspssid 14032 . . 3  |-  ( ( W  e.  LMod  /\  { X }  C_  V )  ->  { X }  C_  ( N `  { X } ) )
51, 4sylan2 286 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  { X }  C_  ( N `  { X } ) )
6 snssg 3757 . . 3  |-  ( X  e.  V  ->  ( X  e.  ( N `  { X } )  <->  { X }  C_  ( N `  { X } ) ) )
76adantl 277 . 2  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  ( X  e.  ( N `  { X } )  <->  { X }  C_  ( N `  { X } ) ) )
85, 7mpbird 167 1  |-  ( ( W  e.  LMod  /\  X  e.  V )  ->  X  e.  ( N `  { X } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167    C_ wss 3157   {csn 3623   ` cfv 5259   Basecbs 12703   LModclmod 13919   LSpanclspn 14018
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-cnex 7987  ax-resscn 7988  ax-1re 7990  ax-addrcl 7993
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-inn 9008  df-2 9066  df-3 9067  df-4 9068  df-5 9069  df-6 9070  df-ndx 12706  df-slot 12707  df-base 12709  df-plusg 12793  df-mulr 12794  df-sca 12796  df-vsca 12797  df-0g 12960  df-mgm 13058  df-sgrp 13104  df-mnd 13119  df-grp 13205  df-lmod 13921  df-lssm 13985  df-lsp 14019
This theorem is referenced by:  lspsnel6  14040  lssats2  14046  lspsneli  14047  lspsn  14048  lspsneq0  14058
  Copyright terms: Public domain W3C validator