ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isneip Unicode version

Theorem isneip 14560
Description: The predicate "the class  N is a neighborhood of point  P". (Contributed by NM, 26-Feb-2007.)
Hypothesis
Ref Expression
neifval.1  |-  X  = 
U. J
Assertion
Ref Expression
isneip  |-  ( ( J  e.  Top  /\  P  e.  X )  ->  ( N  e.  ( ( nei `  J
) `  { P } )  <->  ( N  C_  X  /\  E. g  e.  J  ( P  e.  g  /\  g  C_  N ) ) ) )
Distinct variable groups:    g, J    g, N    P, g    g, X

Proof of Theorem isneip
StepHypRef Expression
1 snssi 3776 . . 3  |-  ( P  e.  X  ->  { P }  C_  X )
2 neifval.1 . . . 4  |-  X  = 
U. J
32isnei 14558 . . 3  |-  ( ( J  e.  Top  /\  { P }  C_  X
)  ->  ( N  e.  ( ( nei `  J
) `  { P } )  <->  ( N  C_  X  /\  E. g  e.  J  ( { P }  C_  g  /\  g  C_  N ) ) ) )
41, 3sylan2 286 . 2  |-  ( ( J  e.  Top  /\  P  e.  X )  ->  ( N  e.  ( ( nei `  J
) `  { P } )  <->  ( N  C_  X  /\  E. g  e.  J  ( { P }  C_  g  /\  g  C_  N ) ) ) )
5 snssg 3766 . . . . . 6  |-  ( P  e.  X  ->  ( P  e.  g  <->  { P }  C_  g ) )
65anbi1d 465 . . . . 5  |-  ( P  e.  X  ->  (
( P  e.  g  /\  g  C_  N
)  <->  ( { P }  C_  g  /\  g  C_  N ) ) )
76rexbidv 2506 . . . 4  |-  ( P  e.  X  ->  ( E. g  e.  J  ( P  e.  g  /\  g  C_  N )  <->  E. g  e.  J  ( { P }  C_  g  /\  g  C_  N
) ) )
87anbi2d 464 . . 3  |-  ( P  e.  X  ->  (
( N  C_  X  /\  E. g  e.  J  ( P  e.  g  /\  g  C_  N ) )  <->  ( N  C_  X  /\  E. g  e.  J  ( { P }  C_  g  /\  g  C_  N ) ) ) )
98adantl 277 . 2  |-  ( ( J  e.  Top  /\  P  e.  X )  ->  ( ( N  C_  X  /\  E. g  e.  J  ( P  e.  g  /\  g  C_  N ) )  <->  ( N  C_  X  /\  E. g  e.  J  ( { P }  C_  g  /\  g  C_  N ) ) ) )
104, 9bitr4d 191 1  |-  ( ( J  e.  Top  /\  P  e.  X )  ->  ( N  e.  ( ( nei `  J
) `  { P } )  <->  ( N  C_  X  /\  E. g  e.  J  ( P  e.  g  /\  g  C_  N ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1372    e. wcel 2175   E.wrex 2484    C_ wss 3165   {csn 3632   U.cuni 3849   ` cfv 5270   Topctop 14411   neicnei 14552
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-pow 4217  ax-pr 4252
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278  df-top 14412  df-nei 14553
This theorem is referenced by:  neipsm  14568  cnpnei  14633  neibl  14905
  Copyright terms: Public domain W3C validator