ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isneip Unicode version

Theorem isneip 12493
Description: The predicate "the class  N is a neighborhood of point  P". (Contributed by NM, 26-Feb-2007.)
Hypothesis
Ref Expression
neifval.1  |-  X  = 
U. J
Assertion
Ref Expression
isneip  |-  ( ( J  e.  Top  /\  P  e.  X )  ->  ( N  e.  ( ( nei `  J
) `  { P } )  <->  ( N  C_  X  /\  E. g  e.  J  ( P  e.  g  /\  g  C_  N ) ) ) )
Distinct variable groups:    g, J    g, N    P, g    g, X

Proof of Theorem isneip
StepHypRef Expression
1 snssi 3696 . . 3  |-  ( P  e.  X  ->  { P }  C_  X )
2 neifval.1 . . . 4  |-  X  = 
U. J
32isnei 12491 . . 3  |-  ( ( J  e.  Top  /\  { P }  C_  X
)  ->  ( N  e.  ( ( nei `  J
) `  { P } )  <->  ( N  C_  X  /\  E. g  e.  J  ( { P }  C_  g  /\  g  C_  N ) ) ) )
41, 3sylan2 284 . 2  |-  ( ( J  e.  Top  /\  P  e.  X )  ->  ( N  e.  ( ( nei `  J
) `  { P } )  <->  ( N  C_  X  /\  E. g  e.  J  ( { P }  C_  g  /\  g  C_  N ) ) ) )
5 snssg 3688 . . . . . 6  |-  ( P  e.  X  ->  ( P  e.  g  <->  { P }  C_  g ) )
65anbi1d 461 . . . . 5  |-  ( P  e.  X  ->  (
( P  e.  g  /\  g  C_  N
)  <->  ( { P }  C_  g  /\  g  C_  N ) ) )
76rexbidv 2455 . . . 4  |-  ( P  e.  X  ->  ( E. g  e.  J  ( P  e.  g  /\  g  C_  N )  <->  E. g  e.  J  ( { P }  C_  g  /\  g  C_  N
) ) )
87anbi2d 460 . . 3  |-  ( P  e.  X  ->  (
( N  C_  X  /\  E. g  e.  J  ( P  e.  g  /\  g  C_  N ) )  <->  ( N  C_  X  /\  E. g  e.  J  ( { P }  C_  g  /\  g  C_  N ) ) ) )
98adantl 275 . 2  |-  ( ( J  e.  Top  /\  P  e.  X )  ->  ( ( N  C_  X  /\  E. g  e.  J  ( P  e.  g  /\  g  C_  N ) )  <->  ( N  C_  X  /\  E. g  e.  J  ( { P }  C_  g  /\  g  C_  N ) ) ) )
104, 9bitr4d 190 1  |-  ( ( J  e.  Top  /\  P  e.  X )  ->  ( N  e.  ( ( nei `  J
) `  { P } )  <->  ( N  C_  X  /\  E. g  e.  J  ( P  e.  g  /\  g  C_  N ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1332    e. wcel 2125   E.wrex 2433    C_ wss 3098   {csn 3556   U.cuni 3768   ` cfv 5163   Topctop 12342   neicnei 12485
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-14 2128  ax-ext 2136  ax-coll 4075  ax-sep 4078  ax-pow 4130  ax-pr 4164
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ral 2437  df-rex 2438  df-reu 2439  df-rab 2441  df-v 2711  df-sbc 2934  df-csb 3028  df-un 3102  df-in 3104  df-ss 3111  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-iun 3847  df-br 3962  df-opab 4022  df-mpt 4023  df-id 4248  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-rn 4590  df-res 4591  df-ima 4592  df-iota 5128  df-fun 5165  df-fn 5166  df-f 5167  df-f1 5168  df-fo 5169  df-f1o 5170  df-fv 5171  df-top 12343  df-nei 12486
This theorem is referenced by:  neipsm  12501  cnpnei  12566  neibl  12838
  Copyright terms: Public domain W3C validator