| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpsyl | Unicode version | ||
| Description: Modus ponens combined with a syllogism inference. (Contributed by Alan Sare, 20-Apr-2011.) |
| Ref | Expression |
|---|---|
| mpsyl.1 |
|
| mpsyl.2 |
|
| mpsyl.3 |
|
| Ref | Expression |
|---|---|
| mpsyl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpsyl.1 |
. . 3
| |
| 2 | 1 | a1i 9 |
. 2
|
| 3 | mpsyl.2 |
. 2
| |
| 4 | mpsyl.3 |
. 2
| |
| 5 | 2, 3, 4 | sylc 62 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: snssg 3757 relcnvtr 5190 relresfld 5200 relcoi1 5202 funco 5299 foimacnv 5525 fvi 5621 isoini2 5869 ovidig 6044 smores2 6361 tfrlem5 6381 snnen2og 6929 phpm 6935 fict 6938 infnfi 6965 isinfinf 6967 exmidpw 6978 difinfinf 7176 enumct 7190 exmidfodomrlemr 7281 exmidfodomrlemrALT 7282 zsupcl 10338 infssuzex 10340 isumz 11571 fsumsersdc 11577 isumclim 11603 isumclim3 11605 zprodap0 11763 alzdvds 12036 bitsfzolem 12136 gcddvds 12155 dvdslegcd 12156 pclemub 12481 ennnfonelemj0 12643 ennnfonelemg 12645 ennnfonelemrn 12661 ctinf 12672 strle1g 12809 fnpr2ob 13042 metrest 14826 dvef 15047 bj-charfunbi 15541 pw1nct 15734 nnsf 15736 exmidsbthrlem 15753 |
| Copyright terms: Public domain | W3C validator |