| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpsyl | Unicode version | ||
| Description: Modus ponens combined with a syllogism inference. (Contributed by Alan Sare, 20-Apr-2011.) |
| Ref | Expression |
|---|---|
| mpsyl.1 |
|
| mpsyl.2 |
|
| mpsyl.3 |
|
| Ref | Expression |
|---|---|
| mpsyl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpsyl.1 |
. . 3
| |
| 2 | 1 | a1i 9 |
. 2
|
| 3 | mpsyl.2 |
. 2
| |
| 4 | mpsyl.3 |
. 2
| |
| 5 | 2, 3, 4 | sylc 62 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: snssg 3767 relcnvtr 5202 relresfld 5212 relcoi1 5214 funco 5311 foimacnv 5540 fvi 5636 isoini2 5888 ovidig 6063 smores2 6380 tfrlem5 6400 snnen2og 6956 phpm 6962 fict 6965 infnfi 6992 isinfinf 6994 exmidpw 7005 difinfinf 7203 enumct 7217 exmidfodomrlemr 7310 exmidfodomrlemrALT 7311 zsupcl 10374 infssuzex 10376 isumz 11700 fsumsersdc 11706 isumclim 11732 isumclim3 11734 zprodap0 11892 alzdvds 12165 bitsfzolem 12265 gcddvds 12284 dvdslegcd 12285 pclemub 12610 ennnfonelemj0 12772 ennnfonelemg 12774 ennnfonelemrn 12790 ctinf 12801 strle1g 12938 fnpr2ob 13172 metrest 14978 dvef 15199 bj-charfunbi 15747 pw1nct 15940 nnsf 15942 exmidsbthrlem 15961 |
| Copyright terms: Public domain | W3C validator |