| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpsyl | Unicode version | ||
| Description: Modus ponens combined with a syllogism inference. (Contributed by Alan Sare, 20-Apr-2011.) |
| Ref | Expression |
|---|---|
| mpsyl.1 |
|
| mpsyl.2 |
|
| mpsyl.3 |
|
| Ref | Expression |
|---|---|
| mpsyl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpsyl.1 |
. . 3
| |
| 2 | 1 | a1i 9 |
. 2
|
| 3 | mpsyl.2 |
. 2
| |
| 4 | mpsyl.3 |
. 2
| |
| 5 | 2, 3, 4 | sylc 62 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: snssg 3801 relcnvtr 5247 relresfld 5257 relcoi1 5259 funco 5357 foimacnv 5589 fvi 5690 isoini2 5942 ovidig 6121 smores2 6438 tfrlem5 6458 snnen2og 7016 phpm 7023 fict 7026 infnfi 7053 isinfinf 7055 exmidpw 7066 difinfinf 7264 enumct 7278 exmidfodomrlemr 7376 exmidfodomrlemrALT 7377 zsupcl 10446 infssuzex 10448 pfxccatin12lem3 11259 isumz 11895 fsumsersdc 11901 isumclim 11927 isumclim3 11929 zprodap0 12087 alzdvds 12360 bitsfzolem 12460 gcddvds 12479 dvdslegcd 12480 pclemub 12805 ennnfonelemj0 12967 ennnfonelemg 12969 ennnfonelemrn 12985 ctinf 12996 strle1g 13134 fnpr2ob 13368 metrest 15174 dvef 15395 umgrnloop2 15943 bj-charfunbi 16132 pw1nct 16328 nnsf 16330 exmidsbthrlem 16349 |
| Copyright terms: Public domain | W3C validator |