| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpsyl | Unicode version | ||
| Description: Modus ponens combined with a syllogism inference. (Contributed by Alan Sare, 20-Apr-2011.) |
| Ref | Expression |
|---|---|
| mpsyl.1 |
|
| mpsyl.2 |
|
| mpsyl.3 |
|
| Ref | Expression |
|---|---|
| mpsyl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpsyl.1 |
. . 3
| |
| 2 | 1 | a1i 9 |
. 2
|
| 3 | mpsyl.2 |
. 2
| |
| 4 | mpsyl.3 |
. 2
| |
| 5 | 2, 3, 4 | sylc 62 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: snssg 3773 relcnvtr 5216 relresfld 5226 relcoi1 5228 funco 5325 foimacnv 5557 fvi 5654 isoini2 5906 ovidig 6081 smores2 6398 tfrlem5 6418 snnen2og 6976 phpm 6983 fict 6986 infnfi 7013 isinfinf 7015 exmidpw 7026 difinfinf 7224 enumct 7238 exmidfodomrlemr 7336 exmidfodomrlemrALT 7337 zsupcl 10406 infssuzex 10408 isumz 11785 fsumsersdc 11791 isumclim 11817 isumclim3 11819 zprodap0 11977 alzdvds 12250 bitsfzolem 12350 gcddvds 12369 dvdslegcd 12370 pclemub 12695 ennnfonelemj0 12857 ennnfonelemg 12859 ennnfonelemrn 12875 ctinf 12886 strle1g 13023 fnpr2ob 13257 metrest 15063 dvef 15284 umgrnloop2 15825 bj-charfunbi 15916 pw1nct 16112 nnsf 16114 exmidsbthrlem 16133 |
| Copyright terms: Public domain | W3C validator |