| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpsyl | Unicode version | ||
| Description: Modus ponens combined with a syllogism inference. (Contributed by Alan Sare, 20-Apr-2011.) |
| Ref | Expression |
|---|---|
| mpsyl.1 |
|
| mpsyl.2 |
|
| mpsyl.3 |
|
| Ref | Expression |
|---|---|
| mpsyl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpsyl.1 |
. . 3
| |
| 2 | 1 | a1i 9 |
. 2
|
| 3 | mpsyl.2 |
. 2
| |
| 4 | mpsyl.3 |
. 2
| |
| 5 | 2, 3, 4 | sylc 62 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: snssg 3766 relcnvtr 5201 relresfld 5211 relcoi1 5213 funco 5310 foimacnv 5539 fvi 5635 isoini2 5887 ovidig 6062 smores2 6379 tfrlem5 6399 snnen2og 6955 phpm 6961 fict 6964 infnfi 6991 isinfinf 6993 exmidpw 7004 difinfinf 7202 enumct 7216 exmidfodomrlemr 7309 exmidfodomrlemrALT 7310 zsupcl 10372 infssuzex 10374 isumz 11642 fsumsersdc 11648 isumclim 11674 isumclim3 11676 zprodap0 11834 alzdvds 12107 bitsfzolem 12207 gcddvds 12226 dvdslegcd 12227 pclemub 12552 ennnfonelemj0 12714 ennnfonelemg 12716 ennnfonelemrn 12732 ctinf 12743 strle1g 12880 fnpr2ob 13114 metrest 14920 dvef 15141 bj-charfunbi 15680 pw1nct 15873 nnsf 15875 exmidsbthrlem 15894 |
| Copyright terms: Public domain | W3C validator |