| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > mpsyl | Unicode version | ||
| Description: Modus ponens combined with a syllogism inference. (Contributed by Alan Sare, 20-Apr-2011.) |
| Ref | Expression |
|---|---|
| mpsyl.1 |
|
| mpsyl.2 |
|
| mpsyl.3 |
|
| Ref | Expression |
|---|---|
| mpsyl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpsyl.1 |
. . 3
| |
| 2 | 1 | a1i 9 |
. 2
|
| 3 | mpsyl.2 |
. 2
| |
| 4 | mpsyl.3 |
. 2
| |
| 5 | 2, 3, 4 | sylc 62 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
| This theorem is referenced by: snssg 3766 relcnvtr 5201 relresfld 5211 relcoi1 5213 funco 5310 foimacnv 5539 fvi 5635 isoini2 5887 ovidig 6062 smores2 6379 tfrlem5 6399 snnen2og 6955 phpm 6961 fict 6964 infnfi 6991 isinfinf 6993 exmidpw 7004 difinfinf 7202 enumct 7216 exmidfodomrlemr 7309 exmidfodomrlemrALT 7310 zsupcl 10372 infssuzex 10374 isumz 11671 fsumsersdc 11677 isumclim 11703 isumclim3 11705 zprodap0 11863 alzdvds 12136 bitsfzolem 12236 gcddvds 12255 dvdslegcd 12256 pclemub 12581 ennnfonelemj0 12743 ennnfonelemg 12745 ennnfonelemrn 12761 ctinf 12772 strle1g 12909 fnpr2ob 13143 metrest 14949 dvef 15170 bj-charfunbi 15709 pw1nct 15902 nnsf 15904 exmidsbthrlem 15923 |
| Copyright terms: Public domain | W3C validator |