Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > mpsyl | Unicode version |
Description: Modus ponens combined with a syllogism inference. (Contributed by Alan Sare, 20-Apr-2011.) |
Ref | Expression |
---|---|
mpsyl.1 | |
mpsyl.2 | |
mpsyl.3 |
Ref | Expression |
---|---|
mpsyl |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mpsyl.1 | . . 3 | |
2 | 1 | a1i 9 | . 2 |
3 | mpsyl.2 | . 2 | |
4 | mpsyl.3 | . 2 | |
5 | 2, 3, 4 | sylc 62 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: relcnvtr 5102 relresfld 5112 relcoi1 5114 funco 5207 foimacnv 5429 fvi 5522 isoini2 5764 ovidig 5932 smores2 6235 tfrlem5 6255 snnen2og 6797 phpm 6803 fict 6806 infnfi 6833 isinfinf 6835 exmidpw 6846 difinfinf 7035 enumct 7049 exmidfodomrlemr 7120 exmidfodomrlemrALT 7121 isumz 11268 fsumsersdc 11274 isumclim 11300 isumclim3 11302 zprodap0 11460 alzdvds 11727 zsupcl 11815 infssuzex 11817 gcddvds 11827 dvdslegcd 11828 ennnfonelemrn 12120 ctinf 12131 strle1g 12240 metrest 12866 dvef 13048 bj-charfunbi 13346 pw1nct 13536 nnsf 13539 exmidsbthrlem 13556 |
Copyright terms: Public domain | W3C validator |