ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strfvssn Unicode version

Theorem strfvssn 12939
Description: A structure component extractor produces a value which is contained in a set dependent on  S, but not  E. This is sometimes useful for showing sethood. (Contributed by Mario Carneiro, 15-Aug-2015.) (Revised by Jim Kingdon, 19-Jan-2023.)
Hypotheses
Ref Expression
strfvssn.c  |-  E  = Slot 
N
strfvssn.s  |-  ( ph  ->  S  e.  V )
strfvssn.n  |-  ( ph  ->  N  e.  NN )
Assertion
Ref Expression
strfvssn  |-  ( ph  ->  ( E `  S
)  C_  U. ran  S
)

Proof of Theorem strfvssn
StepHypRef Expression
1 strfvssn.c . . 3  |-  E  = Slot 
N
2 strfvssn.s . . 3  |-  ( ph  ->  S  e.  V )
3 strfvssn.n . . 3  |-  ( ph  ->  N  e.  NN )
41, 2, 3strnfvnd 12937 . 2  |-  ( ph  ->  ( E `  S
)  =  ( S `
 N ) )
53elexd 2787 . . 3  |-  ( ph  ->  N  e.  _V )
6 fvssunirng 5609 . . 3  |-  ( N  e.  _V  ->  ( S `  N )  C_ 
U. ran  S )
75, 6syl 14 . 2  |-  ( ph  ->  ( S `  N
)  C_  U. ran  S
)
84, 7eqsstrd 3233 1  |-  ( ph  ->  ( E `  S
)  C_  U. ran  S
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2177   _Vcvv 2773    C_ wss 3170   U.cuni 3859   ran crn 4689   ` cfv 5285   NNcn 9066  Slot cslot 12916
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4173  ax-pow 4229  ax-pr 4264  ax-un 4493
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3003  df-un 3174  df-in 3176  df-ss 3183  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3860  df-br 4055  df-opab 4117  df-mpt 4118  df-id 4353  df-xp 4694  df-rel 4695  df-cnv 4696  df-co 4697  df-dm 4698  df-rn 4699  df-iota 5246  df-fun 5287  df-fv 5293  df-slot 12921
This theorem is referenced by:  prdsvallem  13189  prdsval  13190
  Copyright terms: Public domain W3C validator