ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strfvssn Unicode version

Theorem strfvssn 12438
Description: A structure component extractor produces a value which is contained in a set dependent on  S, but not  E. This is sometimes useful for showing sethood. (Contributed by Mario Carneiro, 15-Aug-2015.) (Revised by Jim Kingdon, 19-Jan-2023.)
Hypotheses
Ref Expression
strfvssn.c  |-  E  = Slot 
N
strfvssn.s  |-  ( ph  ->  S  e.  V )
strfvssn.n  |-  ( ph  ->  N  e.  NN )
Assertion
Ref Expression
strfvssn  |-  ( ph  ->  ( E `  S
)  C_  U. ran  S
)

Proof of Theorem strfvssn
StepHypRef Expression
1 strfvssn.c . . 3  |-  E  = Slot 
N
2 strfvssn.s . . 3  |-  ( ph  ->  S  e.  V )
3 strfvssn.n . . 3  |-  ( ph  ->  N  e.  NN )
41, 2, 3strnfvnd 12436 . 2  |-  ( ph  ->  ( E `  S
)  =  ( S `
 N ) )
53elexd 2743 . . 3  |-  ( ph  ->  N  e.  _V )
6 fvssunirng 5511 . . 3  |-  ( N  e.  _V  ->  ( S `  N )  C_ 
U. ran  S )
75, 6syl 14 . 2  |-  ( ph  ->  ( S `  N
)  C_  U. ran  S
)
84, 7eqsstrd 3183 1  |-  ( ph  ->  ( E `  S
)  C_  U. ran  S
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1348    e. wcel 2141   _Vcvv 2730    C_ wss 3121   U.cuni 3796   ran crn 4612   ` cfv 5198   NNcn 8878  Slot cslot 12415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-iota 5160  df-fun 5200  df-fv 5206  df-slot 12420
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator