ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strfvssn Unicode version

Theorem strfvssn 12640
Description: A structure component extractor produces a value which is contained in a set dependent on  S, but not  E. This is sometimes useful for showing sethood. (Contributed by Mario Carneiro, 15-Aug-2015.) (Revised by Jim Kingdon, 19-Jan-2023.)
Hypotheses
Ref Expression
strfvssn.c  |-  E  = Slot 
N
strfvssn.s  |-  ( ph  ->  S  e.  V )
strfvssn.n  |-  ( ph  ->  N  e.  NN )
Assertion
Ref Expression
strfvssn  |-  ( ph  ->  ( E `  S
)  C_  U. ran  S
)

Proof of Theorem strfvssn
StepHypRef Expression
1 strfvssn.c . . 3  |-  E  = Slot 
N
2 strfvssn.s . . 3  |-  ( ph  ->  S  e.  V )
3 strfvssn.n . . 3  |-  ( ph  ->  N  e.  NN )
41, 2, 3strnfvnd 12638 . 2  |-  ( ph  ->  ( E `  S
)  =  ( S `
 N ) )
53elexd 2773 . . 3  |-  ( ph  ->  N  e.  _V )
6 fvssunirng 5569 . . 3  |-  ( N  e.  _V  ->  ( S `  N )  C_ 
U. ran  S )
75, 6syl 14 . 2  |-  ( ph  ->  ( S `  N
)  C_  U. ran  S
)
84, 7eqsstrd 3215 1  |-  ( ph  ->  ( E `  S
)  C_  U. ran  S
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2164   _Vcvv 2760    C_ wss 3153   U.cuni 3835   ran crn 4660   ` cfv 5254   NNcn 8982  Slot cslot 12617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-iota 5215  df-fun 5256  df-fv 5262  df-slot 12622
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator