ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strfvssn Unicode version

Theorem strfvssn 12416
Description: A structure component extractor produces a value which is contained in a set dependent on  S, but not  E. This is sometimes useful for showing sethood. (Contributed by Mario Carneiro, 15-Aug-2015.) (Revised by Jim Kingdon, 19-Jan-2023.)
Hypotheses
Ref Expression
strfvssn.c  |-  E  = Slot 
N
strfvssn.s  |-  ( ph  ->  S  e.  V )
strfvssn.n  |-  ( ph  ->  N  e.  NN )
Assertion
Ref Expression
strfvssn  |-  ( ph  ->  ( E `  S
)  C_  U. ran  S
)

Proof of Theorem strfvssn
StepHypRef Expression
1 strfvssn.c . . 3  |-  E  = Slot 
N
2 strfvssn.s . . 3  |-  ( ph  ->  S  e.  V )
3 strfvssn.n . . 3  |-  ( ph  ->  N  e.  NN )
41, 2, 3strnfvnd 12414 . 2  |-  ( ph  ->  ( E `  S
)  =  ( S `
 N ) )
53elexd 2739 . . 3  |-  ( ph  ->  N  e.  _V )
6 fvssunirng 5501 . . 3  |-  ( N  e.  _V  ->  ( S `  N )  C_ 
U. ran  S )
75, 6syl 14 . 2  |-  ( ph  ->  ( S `  N
)  C_  U. ran  S
)
84, 7eqsstrd 3178 1  |-  ( ph  ->  ( E `  S
)  C_  U. ran  S
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343    e. wcel 2136   _Vcvv 2726    C_ wss 3116   U.cuni 3789   ran crn 4605   ` cfv 5188   NNcn 8857  Slot cslot 12393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-iota 5153  df-fun 5190  df-fv 5196  df-slot 12398
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator