ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strfvssn Unicode version

Theorem strfvssn 12700
Description: A structure component extractor produces a value which is contained in a set dependent on  S, but not  E. This is sometimes useful for showing sethood. (Contributed by Mario Carneiro, 15-Aug-2015.) (Revised by Jim Kingdon, 19-Jan-2023.)
Hypotheses
Ref Expression
strfvssn.c  |-  E  = Slot 
N
strfvssn.s  |-  ( ph  ->  S  e.  V )
strfvssn.n  |-  ( ph  ->  N  e.  NN )
Assertion
Ref Expression
strfvssn  |-  ( ph  ->  ( E `  S
)  C_  U. ran  S
)

Proof of Theorem strfvssn
StepHypRef Expression
1 strfvssn.c . . 3  |-  E  = Slot 
N
2 strfvssn.s . . 3  |-  ( ph  ->  S  e.  V )
3 strfvssn.n . . 3  |-  ( ph  ->  N  e.  NN )
41, 2, 3strnfvnd 12698 . 2  |-  ( ph  ->  ( E `  S
)  =  ( S `
 N ) )
53elexd 2776 . . 3  |-  ( ph  ->  N  e.  _V )
6 fvssunirng 5573 . . 3  |-  ( N  e.  _V  ->  ( S `  N )  C_ 
U. ran  S )
75, 6syl 14 . 2  |-  ( ph  ->  ( S `  N
)  C_  U. ran  S
)
84, 7eqsstrd 3219 1  |-  ( ph  ->  ( E `  S
)  C_  U. ran  S
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    e. wcel 2167   _Vcvv 2763    C_ wss 3157   U.cuni 3839   ran crn 4664   ` cfv 5258   NNcn 8990  Slot cslot 12677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-iota 5219  df-fun 5260  df-fv 5266  df-slot 12682
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator