ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strnfvnd Unicode version

Theorem strnfvnd 12852
Description: Deduction version of strnfvn 12853. (Contributed by Mario Carneiro, 15-Nov-2014.) (Revised by Jim Kingdon, 19-Jan-2023.)
Hypotheses
Ref Expression
strnfvnd.c  |-  E  = Slot 
N
strnfvnd.f  |-  ( ph  ->  S  e.  V )
strnfvnd.n  |-  ( ph  ->  N  e.  NN )
Assertion
Ref Expression
strnfvnd  |-  ( ph  ->  ( E `  S
)  =  ( S `
 N ) )

Proof of Theorem strnfvnd
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 strnfvnd.f . . 3  |-  ( ph  ->  S  e.  V )
21elexd 2785 . 2  |-  ( ph  ->  S  e.  _V )
3 strnfvnd.n . . 3  |-  ( ph  ->  N  e.  NN )
4 fvexg 5595 . . 3  |-  ( ( S  e.  V  /\  N  e.  NN )  ->  ( S `  N
)  e.  _V )
51, 3, 4syl2anc 411 . 2  |-  ( ph  ->  ( S `  N
)  e.  _V )
6 fveq1 5575 . . 3  |-  ( x  =  S  ->  (
x `  N )  =  ( S `  N ) )
7 strnfvnd.c . . . 4  |-  E  = Slot 
N
8 df-slot 12836 . . . 4  |- Slot  N  =  ( x  e.  _V  |->  ( x `  N
) )
97, 8eqtri 2226 . . 3  |-  E  =  ( x  e.  _V  |->  ( x `  N
) )
106, 9fvmptg 5655 . 2  |-  ( ( S  e.  _V  /\  ( S `  N )  e.  _V )  -> 
( E `  S
)  =  ( S `
 N ) )
112, 5, 10syl2anc 411 1  |-  ( ph  ->  ( E `  S
)  =  ( S `
 N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2176   _Vcvv 2772    |-> cmpt 4105   ` cfv 5271   NNcn 9036  Slot cslot 12831
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-iota 5232  df-fun 5273  df-fv 5279  df-slot 12836
This theorem is referenced by:  strnfvn  12853  strfvssn  12854  strndxid  12860  strsetsid  12865  strslfvd  12874  strslfv2d  12875  setsslid  12883  setsslnid  12884  basm  12893  edgfndxid  15608
  Copyright terms: Public domain W3C validator