ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strnfvnd Unicode version

Theorem strnfvnd 12449
Description: Deduction version of strnfvn 12450. (Contributed by Mario Carneiro, 15-Nov-2014.) (Revised by Jim Kingdon, 19-Jan-2023.)
Hypotheses
Ref Expression
strnfvnd.c  |-  E  = Slot 
N
strnfvnd.f  |-  ( ph  ->  S  e.  V )
strnfvnd.n  |-  ( ph  ->  N  e.  NN )
Assertion
Ref Expression
strnfvnd  |-  ( ph  ->  ( E `  S
)  =  ( S `
 N ) )

Proof of Theorem strnfvnd
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 strnfvnd.f . . 3  |-  ( ph  ->  S  e.  V )
21elexd 2748 . 2  |-  ( ph  ->  S  e.  _V )
3 strnfvnd.n . . 3  |-  ( ph  ->  N  e.  NN )
4 fvexg 5526 . . 3  |-  ( ( S  e.  V  /\  N  e.  NN )  ->  ( S `  N
)  e.  _V )
51, 3, 4syl2anc 411 . 2  |-  ( ph  ->  ( S `  N
)  e.  _V )
6 fveq1 5506 . . 3  |-  ( x  =  S  ->  (
x `  N )  =  ( S `  N ) )
7 strnfvnd.c . . . 4  |-  E  = Slot 
N
8 df-slot 12433 . . . 4  |- Slot  N  =  ( x  e.  _V  |->  ( x `  N
) )
97, 8eqtri 2196 . . 3  |-  E  =  ( x  e.  _V  |->  ( x `  N
) )
106, 9fvmptg 5584 . 2  |-  ( ( S  e.  _V  /\  ( S `  N )  e.  _V )  -> 
( E `  S
)  =  ( S `
 N ) )
112, 5, 10syl2anc 411 1  |-  ( ph  ->  ( E `  S
)  =  ( S `
 N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1353    e. wcel 2146   _Vcvv 2735    |-> cmpt 4059   ` cfv 5208   NNcn 8892  Slot cslot 12428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ral 2458  df-rex 2459  df-v 2737  df-sbc 2961  df-un 3131  df-in 3133  df-ss 3140  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-iota 5170  df-fun 5210  df-fv 5216  df-slot 12433
This theorem is referenced by:  strnfvn  12450  strfvssn  12451  strndxid  12457  strsetsid  12462  strslfvd  12470  strslfv2d  12471  setsslid  12479  setsslnid  12480
  Copyright terms: Public domain W3C validator