ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strnfvnd Unicode version

Theorem strnfvnd 12967
Description: Deduction version of strnfvn 12968. (Contributed by Mario Carneiro, 15-Nov-2014.) (Revised by Jim Kingdon, 19-Jan-2023.)
Hypotheses
Ref Expression
strnfvnd.c  |-  E  = Slot 
N
strnfvnd.f  |-  ( ph  ->  S  e.  V )
strnfvnd.n  |-  ( ph  ->  N  e.  NN )
Assertion
Ref Expression
strnfvnd  |-  ( ph  ->  ( E `  S
)  =  ( S `
 N ) )

Proof of Theorem strnfvnd
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 strnfvnd.f . . 3  |-  ( ph  ->  S  e.  V )
21elexd 2790 . 2  |-  ( ph  ->  S  e.  _V )
3 strnfvnd.n . . 3  |-  ( ph  ->  N  e.  NN )
4 fvexg 5618 . . 3  |-  ( ( S  e.  V  /\  N  e.  NN )  ->  ( S `  N
)  e.  _V )
51, 3, 4syl2anc 411 . 2  |-  ( ph  ->  ( S `  N
)  e.  _V )
6 fveq1 5598 . . 3  |-  ( x  =  S  ->  (
x `  N )  =  ( S `  N ) )
7 strnfvnd.c . . . 4  |-  E  = Slot 
N
8 df-slot 12951 . . . 4  |- Slot  N  =  ( x  e.  _V  |->  ( x `  N
) )
97, 8eqtri 2228 . . 3  |-  E  =  ( x  e.  _V  |->  ( x `  N
) )
106, 9fvmptg 5678 . 2  |-  ( ( S  e.  _V  /\  ( S `  N )  e.  _V )  -> 
( E `  S
)  =  ( S `
 N ) )
112, 5, 10syl2anc 411 1  |-  ( ph  ->  ( E `  S
)  =  ( S `
 N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    e. wcel 2178   _Vcvv 2776    |-> cmpt 4121   ` cfv 5290   NNcn 9071  Slot cslot 12946
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-iota 5251  df-fun 5292  df-fv 5298  df-slot 12951
This theorem is referenced by:  strnfvn  12968  strfvssn  12969  strndxid  12975  strsetsid  12980  strslfvd  12989  strslfv2d  12990  setsslid  12998  setsslnid  12999  basm  13008  edgfndxid  15723
  Copyright terms: Public domain W3C validator