| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ndxarg | Unicode version | ||
| Description: Get the numeric argument from a defined structure component extractor such as df-base 12923. (Contributed by Mario Carneiro, 6-Oct-2013.) |
| Ref | Expression |
|---|---|
| ndxarg.1 |
|
| ndxarg.2 |
|
| Ref | Expression |
|---|---|
| ndxarg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ndx 12920 |
. . . 4
| |
| 2 | nnex 9072 |
. . . . 5
| |
| 3 | resiexg 5018 |
. . . . 5
| |
| 4 | 2, 3 | ax-mp 5 |
. . . 4
|
| 5 | 1, 4 | eqeltri 2279 |
. . 3
|
| 6 | ndxarg.1 |
. . 3
| |
| 7 | ndxarg.2 |
. . 3
| |
| 8 | 5, 6, 7 | strnfvn 12938 |
. 2
|
| 9 | 1 | fveq1i 5595 |
. 2
|
| 10 | fvresi 5795 |
. . 3
| |
| 11 | 7, 10 | ax-mp 5 |
. 2
|
| 12 | 8, 9, 11 | 3eqtri 2231 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-sep 4173 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-cnex 8046 ax-resscn 8047 ax-1re 8049 ax-addrcl 8052 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rex 2491 df-v 2775 df-sbc 3003 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-br 4055 df-opab 4117 df-mpt 4118 df-id 4353 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-iota 5246 df-fun 5287 df-fv 5293 df-inn 9067 df-ndx 12920 df-slot 12921 |
| This theorem is referenced by: ndxid 12941 ndxslid 12942 strndxid 12945 basendx 12972 basendxnn 12973 plusgndx 13026 2strstrg 13036 2strbasg 13037 2stropg 13038 2strstr1g 13039 2strop1g 13041 basendxnplusgndx 13042 mulrndx 13047 basendxnmulrndx 13051 starvndx 13056 scandx 13068 vscandx 13074 ipndx 13086 tsetndx 13103 plendx 13117 ocndx 13128 dsndx 13132 unifndx 13143 homndx 13150 ccondx 13153 edgfndx 15691 |
| Copyright terms: Public domain | W3C validator |