ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ndxarg Unicode version

Theorem ndxarg 12428
Description: Get the numeric argument from a defined structure component extractor such as df-base 12411. (Contributed by Mario Carneiro, 6-Oct-2013.)
Hypotheses
Ref Expression
ndxarg.1  |-  E  = Slot 
N
ndxarg.2  |-  N  e.  NN
Assertion
Ref Expression
ndxarg  |-  ( E `
 ndx )  =  N

Proof of Theorem ndxarg
StepHypRef Expression
1 df-ndx 12408 . . . 4  |-  ndx  =  (  _I  |`  NN )
2 nnex 8873 . . . . 5  |-  NN  e.  _V
3 resiexg 4934 . . . . 5  |-  ( NN  e.  _V  ->  (  _I  |`  NN )  e. 
_V )
42, 3ax-mp 5 . . . 4  |-  (  _I  |`  NN )  e.  _V
51, 4eqeltri 2243 . . 3  |-  ndx  e.  _V
6 ndxarg.1 . . 3  |-  E  = Slot 
N
7 ndxarg.2 . . 3  |-  N  e.  NN
85, 6, 7strnfvn 12426 . 2  |-  ( E `
 ndx )  =  ( ndx `  N
)
91fveq1i 5495 . 2  |-  ( ndx `  N )  =  ( (  _I  |`  NN ) `
 N )
10 fvresi 5687 . . 3  |-  ( N  e.  NN  ->  (
(  _I  |`  NN ) `
 N )  =  N )
117, 10ax-mp 5 . 2  |-  ( (  _I  |`  NN ) `  N )  =  N
128, 9, 113eqtri 2195 1  |-  ( E `
 ndx )  =  N
Colors of variables: wff set class
Syntax hints:    = wceq 1348    e. wcel 2141   _Vcvv 2730    _I cid 4271    |` cres 4611   ` cfv 5196   NNcn 8867   ndxcnx 12402  Slot cslot 12404
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4105  ax-pow 4158  ax-pr 4192  ax-un 4416  ax-cnex 7854  ax-resscn 7855  ax-1re 7857  ax-addrcl 7860
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3566  df-sn 3587  df-pr 3588  df-op 3590  df-uni 3795  df-int 3830  df-br 3988  df-opab 4049  df-mpt 4050  df-id 4276  df-xp 4615  df-rel 4616  df-cnv 4617  df-co 4618  df-dm 4619  df-rn 4620  df-res 4621  df-iota 5158  df-fun 5198  df-fv 5204  df-inn 8868  df-ndx 12408  df-slot 12409
This theorem is referenced by:  ndxid  12429  ndxslid  12430  strndxid  12433  basendx  12459  basendxnn  12460  plusgndx  12500  2strstrg  12507  2strbasg  12508  2stropg  12509  2strstr1g  12510  2strop1g  12512  basendxnplusgndx  12513  mulrndx  12517  basendxnmulrndx  12521  starvndx  12526  scandx  12534  vscandx  12537  ipndx  12545  tsetndx  12555  plendx  12562  dsndx  12565
  Copyright terms: Public domain W3C validator