ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ndxarg Unicode version

Theorem ndxarg 12439
Description: Get the numeric argument from a defined structure component extractor such as df-base 12422. (Contributed by Mario Carneiro, 6-Oct-2013.)
Hypotheses
Ref Expression
ndxarg.1  |-  E  = Slot 
N
ndxarg.2  |-  N  e.  NN
Assertion
Ref Expression
ndxarg  |-  ( E `
 ndx )  =  N

Proof of Theorem ndxarg
StepHypRef Expression
1 df-ndx 12419 . . . 4  |-  ndx  =  (  _I  |`  NN )
2 nnex 8884 . . . . 5  |-  NN  e.  _V
3 resiexg 4936 . . . . 5  |-  ( NN  e.  _V  ->  (  _I  |`  NN )  e. 
_V )
42, 3ax-mp 5 . . . 4  |-  (  _I  |`  NN )  e.  _V
51, 4eqeltri 2243 . . 3  |-  ndx  e.  _V
6 ndxarg.1 . . 3  |-  E  = Slot 
N
7 ndxarg.2 . . 3  |-  N  e.  NN
85, 6, 7strnfvn 12437 . 2  |-  ( E `
 ndx )  =  ( ndx `  N
)
91fveq1i 5497 . 2  |-  ( ndx `  N )  =  ( (  _I  |`  NN ) `
 N )
10 fvresi 5689 . . 3  |-  ( N  e.  NN  ->  (
(  _I  |`  NN ) `
 N )  =  N )
117, 10ax-mp 5 . 2  |-  ( (  _I  |`  NN ) `  N )  =  N
128, 9, 113eqtri 2195 1  |-  ( E `
 ndx )  =  N
Colors of variables: wff set class
Syntax hints:    = wceq 1348    e. wcel 2141   _Vcvv 2730    _I cid 4273    |` cres 4613   ` cfv 5198   NNcn 8878   ndxcnx 12413  Slot cslot 12415
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-cnex 7865  ax-resscn 7866  ax-1re 7868  ax-addrcl 7871
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-iota 5160  df-fun 5200  df-fv 5206  df-inn 8879  df-ndx 12419  df-slot 12420
This theorem is referenced by:  ndxid  12440  ndxslid  12441  strndxid  12444  basendx  12470  basendxnn  12471  plusgndx  12511  2strstrg  12518  2strbasg  12519  2stropg  12520  2strstr1g  12521  2strop1g  12523  basendxnplusgndx  12524  mulrndx  12528  basendxnmulrndx  12532  starvndx  12537  scandx  12545  vscandx  12548  ipndx  12556  tsetndx  12566  plendx  12573  dsndx  12576
  Copyright terms: Public domain W3C validator