Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ndxarg | Unicode version |
Description: Get the numeric argument from a defined structure component extractor such as df-base 12411. (Contributed by Mario Carneiro, 6-Oct-2013.) |
Ref | Expression |
---|---|
ndxarg.1 | Slot |
ndxarg.2 |
Ref | Expression |
---|---|
ndxarg |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ndx 12408 | . . . 4 | |
2 | nnex 8873 | . . . . 5 | |
3 | resiexg 4934 | . . . . 5 | |
4 | 2, 3 | ax-mp 5 | . . . 4 |
5 | 1, 4 | eqeltri 2243 | . . 3 |
6 | ndxarg.1 | . . 3 Slot | |
7 | ndxarg.2 | . . 3 | |
8 | 5, 6, 7 | strnfvn 12426 | . 2 |
9 | 1 | fveq1i 5495 | . 2 |
10 | fvresi 5687 | . . 3 | |
11 | 7, 10 | ax-mp 5 | . 2 |
12 | 8, 9, 11 | 3eqtri 2195 | 1 |
Colors of variables: wff set class |
Syntax hints: wceq 1348 wcel 2141 cvv 2730 cid 4271 cres 4611 cfv 5196 cn 8867 cnx 12402 Slot cslot 12404 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 ax-cnex 7854 ax-resscn 7855 ax-1re 7857 ax-addrcl 7860 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-int 3830 df-br 3988 df-opab 4049 df-mpt 4050 df-id 4276 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-iota 5158 df-fun 5198 df-fv 5204 df-inn 8868 df-ndx 12408 df-slot 12409 |
This theorem is referenced by: ndxid 12429 ndxslid 12430 strndxid 12433 basendx 12459 basendxnn 12460 plusgndx 12500 2strstrg 12507 2strbasg 12508 2stropg 12509 2strstr1g 12510 2strop1g 12512 basendxnplusgndx 12513 mulrndx 12517 basendxnmulrndx 12521 starvndx 12526 scandx 12534 vscandx 12537 ipndx 12545 tsetndx 12555 plendx 12562 dsndx 12565 |
Copyright terms: Public domain | W3C validator |