| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > ndxarg | Unicode version | ||
| Description: Get the numeric argument from a defined structure component extractor such as df-base 13033. (Contributed by Mario Carneiro, 6-Oct-2013.) |
| Ref | Expression |
|---|---|
| ndxarg.1 |
|
| ndxarg.2 |
|
| Ref | Expression |
|---|---|
| ndxarg |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ndx 13030 |
. . . 4
| |
| 2 | nnex 9112 |
. . . . 5
| |
| 3 | resiexg 5049 |
. . . . 5
| |
| 4 | 2, 3 | ax-mp 5 |
. . . 4
|
| 5 | 1, 4 | eqeltri 2302 |
. . 3
|
| 6 | ndxarg.1 |
. . 3
| |
| 7 | ndxarg.2 |
. . 3
| |
| 8 | 5, 6, 7 | strnfvn 13048 |
. 2
|
| 9 | 1 | fveq1i 5627 |
. 2
|
| 10 | fvresi 5831 |
. . 3
| |
| 11 | 7, 10 | ax-mp 5 |
. 2
|
| 12 | 8, 9, 11 | 3eqtri 2254 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-cnex 8086 ax-resscn 8087 ax-1re 8089 ax-addrcl 8092 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-iota 5277 df-fun 5319 df-fv 5325 df-inn 9107 df-ndx 13030 df-slot 13031 |
| This theorem is referenced by: ndxid 13051 ndxslid 13052 strndxid 13055 basendx 13082 basendxnn 13083 plusgndx 13137 2strstrg 13147 2strbasg 13148 2stropg 13149 2strstr1g 13150 2strop1g 13152 basendxnplusgndx 13153 mulrndx 13158 basendxnmulrndx 13162 starvndx 13167 scandx 13179 vscandx 13185 ipndx 13197 tsetndx 13214 plendx 13228 ocndx 13239 dsndx 13243 unifndx 13254 homndx 13261 ccondx 13264 edgfndx 15802 |
| Copyright terms: Public domain | W3C validator |