ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strfvssn GIF version

Theorem strfvssn 12898
Description: A structure component extractor produces a value which is contained in a set dependent on 𝑆, but not 𝐸. This is sometimes useful for showing sethood. (Contributed by Mario Carneiro, 15-Aug-2015.) (Revised by Jim Kingdon, 19-Jan-2023.)
Hypotheses
Ref Expression
strfvssn.c 𝐸 = Slot 𝑁
strfvssn.s (𝜑𝑆𝑉)
strfvssn.n (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
strfvssn (𝜑 → (𝐸𝑆) ⊆ ran 𝑆)

Proof of Theorem strfvssn
StepHypRef Expression
1 strfvssn.c . . 3 𝐸 = Slot 𝑁
2 strfvssn.s . . 3 (𝜑𝑆𝑉)
3 strfvssn.n . . 3 (𝜑𝑁 ∈ ℕ)
41, 2, 3strnfvnd 12896 . 2 (𝜑 → (𝐸𝑆) = (𝑆𝑁))
53elexd 2786 . . 3 (𝜑𝑁 ∈ V)
6 fvssunirng 5598 . . 3 (𝑁 ∈ V → (𝑆𝑁) ⊆ ran 𝑆)
75, 6syl 14 . 2 (𝜑 → (𝑆𝑁) ⊆ ran 𝑆)
84, 7eqsstrd 3230 1 (𝜑 → (𝐸𝑆) ⊆ ran 𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373  wcel 2177  Vcvv 2773  wss 3167   cuni 3852  ran crn 4680  cfv 5276  cn 9043  Slot cslot 12875
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4166  ax-pow 4222  ax-pr 4257  ax-un 4484
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-sbc 3000  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-uni 3853  df-br 4048  df-opab 4110  df-mpt 4111  df-id 4344  df-xp 4685  df-rel 4686  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-iota 5237  df-fun 5278  df-fv 5284  df-slot 12880
This theorem is referenced by:  prdsvallem  13148  prdsval  13149
  Copyright terms: Public domain W3C validator