| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > strfvssn | GIF version | ||
| Description: A structure component extractor produces a value which is contained in a set dependent on 𝑆, but not 𝐸. This is sometimes useful for showing sethood. (Contributed by Mario Carneiro, 15-Aug-2015.) (Revised by Jim Kingdon, 19-Jan-2023.) | 
| Ref | Expression | 
|---|---|
| strfvssn.c | ⊢ 𝐸 = Slot 𝑁 | 
| strfvssn.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) | 
| strfvssn.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) | 
| Ref | Expression | 
|---|---|
| strfvssn | ⊢ (𝜑 → (𝐸‘𝑆) ⊆ ∪ ran 𝑆) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | strfvssn.c | . . 3 ⊢ 𝐸 = Slot 𝑁 | |
| 2 | strfvssn.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
| 3 | strfvssn.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 4 | 1, 2, 3 | strnfvnd 12698 | . 2 ⊢ (𝜑 → (𝐸‘𝑆) = (𝑆‘𝑁)) | 
| 5 | 3 | elexd 2776 | . . 3 ⊢ (𝜑 → 𝑁 ∈ V) | 
| 6 | fvssunirng 5573 | . . 3 ⊢ (𝑁 ∈ V → (𝑆‘𝑁) ⊆ ∪ ran 𝑆) | |
| 7 | 5, 6 | syl 14 | . 2 ⊢ (𝜑 → (𝑆‘𝑁) ⊆ ∪ ran 𝑆) | 
| 8 | 4, 7 | eqsstrd 3219 | 1 ⊢ (𝜑 → (𝐸‘𝑆) ⊆ ∪ ran 𝑆) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2167 Vcvv 2763 ⊆ wss 3157 ∪ cuni 3839 ran crn 4664 ‘cfv 5258 ℕcn 8990 Slot cslot 12677 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-iota 5219 df-fun 5260 df-fv 5266 df-slot 12682 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |