![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > strfvssn | GIF version |
Description: A structure component extractor produces a value which is contained in a set dependent on 𝑆, but not 𝐸. This is sometimes useful for showing sethood. (Contributed by Mario Carneiro, 15-Aug-2015.) (Revised by Jim Kingdon, 19-Jan-2023.) |
Ref | Expression |
---|---|
strfvssn.c | ⊢ 𝐸 = Slot 𝑁 |
strfvssn.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
strfvssn.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
Ref | Expression |
---|---|
strfvssn | ⊢ (𝜑 → (𝐸‘𝑆) ⊆ ∪ ran 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | strfvssn.c | . . 3 ⊢ 𝐸 = Slot 𝑁 | |
2 | strfvssn.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
3 | strfvssn.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
4 | 1, 2, 3 | strnfvnd 12500 | . 2 ⊢ (𝜑 → (𝐸‘𝑆) = (𝑆‘𝑁)) |
5 | 3 | elexd 2765 | . . 3 ⊢ (𝜑 → 𝑁 ∈ V) |
6 | fvssunirng 5545 | . . 3 ⊢ (𝑁 ∈ V → (𝑆‘𝑁) ⊆ ∪ ran 𝑆) | |
7 | 5, 6 | syl 14 | . 2 ⊢ (𝜑 → (𝑆‘𝑁) ⊆ ∪ ran 𝑆) |
8 | 4, 7 | eqsstrd 3206 | 1 ⊢ (𝜑 → (𝐸‘𝑆) ⊆ ∪ ran 𝑆) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1364 ∈ wcel 2160 Vcvv 2752 ⊆ wss 3144 ∪ cuni 3824 ran crn 4642 ‘cfv 5231 ℕcn 8937 Slot cslot 12479 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2162 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4189 ax-pr 4224 ax-un 4448 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ral 2473 df-rex 2474 df-v 2754 df-sbc 2978 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-br 4019 df-opab 4080 df-mpt 4081 df-id 4308 df-xp 4647 df-rel 4648 df-cnv 4649 df-co 4650 df-dm 4651 df-rn 4652 df-iota 5193 df-fun 5233 df-fv 5239 df-slot 12484 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |