| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > strfvssn | GIF version | ||
| Description: A structure component extractor produces a value which is contained in a set dependent on 𝑆, but not 𝐸. This is sometimes useful for showing sethood. (Contributed by Mario Carneiro, 15-Aug-2015.) (Revised by Jim Kingdon, 19-Jan-2023.) |
| Ref | Expression |
|---|---|
| strfvssn.c | ⊢ 𝐸 = Slot 𝑁 |
| strfvssn.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
| strfvssn.n | ⊢ (𝜑 → 𝑁 ∈ ℕ) |
| Ref | Expression |
|---|---|
| strfvssn | ⊢ (𝜑 → (𝐸‘𝑆) ⊆ ∪ ran 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | strfvssn.c | . . 3 ⊢ 𝐸 = Slot 𝑁 | |
| 2 | strfvssn.s | . . 3 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
| 3 | strfvssn.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ ℕ) | |
| 4 | 1, 2, 3 | strnfvnd 13047 | . 2 ⊢ (𝜑 → (𝐸‘𝑆) = (𝑆‘𝑁)) |
| 5 | 3 | elexd 2813 | . . 3 ⊢ (𝜑 → 𝑁 ∈ V) |
| 6 | fvssunirng 5641 | . . 3 ⊢ (𝑁 ∈ V → (𝑆‘𝑁) ⊆ ∪ ran 𝑆) | |
| 7 | 5, 6 | syl 14 | . 2 ⊢ (𝜑 → (𝑆‘𝑁) ⊆ ∪ ran 𝑆) |
| 8 | 4, 7 | eqsstrd 3260 | 1 ⊢ (𝜑 → (𝐸‘𝑆) ⊆ ∪ ran 𝑆) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1395 ∈ wcel 2200 Vcvv 2799 ⊆ wss 3197 ∪ cuni 3887 ran crn 4719 ‘cfv 5317 ℕcn 9106 Slot cslot 13026 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rex 2514 df-v 2801 df-sbc 3029 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-iota 5277 df-fun 5319 df-fv 5325 df-slot 13031 |
| This theorem is referenced by: prdsvallem 13300 prdsval 13301 |
| Copyright terms: Public domain | W3C validator |