ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strfvssn GIF version

Theorem strfvssn 13049
Description: A structure component extractor produces a value which is contained in a set dependent on 𝑆, but not 𝐸. This is sometimes useful for showing sethood. (Contributed by Mario Carneiro, 15-Aug-2015.) (Revised by Jim Kingdon, 19-Jan-2023.)
Hypotheses
Ref Expression
strfvssn.c 𝐸 = Slot 𝑁
strfvssn.s (𝜑𝑆𝑉)
strfvssn.n (𝜑𝑁 ∈ ℕ)
Assertion
Ref Expression
strfvssn (𝜑 → (𝐸𝑆) ⊆ ran 𝑆)

Proof of Theorem strfvssn
StepHypRef Expression
1 strfvssn.c . . 3 𝐸 = Slot 𝑁
2 strfvssn.s . . 3 (𝜑𝑆𝑉)
3 strfvssn.n . . 3 (𝜑𝑁 ∈ ℕ)
41, 2, 3strnfvnd 13047 . 2 (𝜑 → (𝐸𝑆) = (𝑆𝑁))
53elexd 2813 . . 3 (𝜑𝑁 ∈ V)
6 fvssunirng 5641 . . 3 (𝑁 ∈ V → (𝑆𝑁) ⊆ ran 𝑆)
75, 6syl 14 . 2 (𝜑 → (𝑆𝑁) ⊆ ran 𝑆)
84, 7eqsstrd 3260 1 (𝜑 → (𝐸𝑆) ⊆ ran 𝑆)
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wcel 2200  Vcvv 2799  wss 3197   cuni 3887  ran crn 4719  cfv 5317  cn 9106  Slot cslot 13026
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-iota 5277  df-fun 5319  df-fv 5325  df-slot 13031
This theorem is referenced by:  prdsvallem  13300  prdsval  13301
  Copyright terms: Public domain W3C validator