ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strnfvn Unicode version

Theorem strnfvn 13053
Description: Value of a structure component extractor  E. Normally,  E is a defined constant symbol such as  Base (df-base 13038) and  N is a fixed integer such as  1.  S is a structure, i.e. a specific member of a class of structures.

Note: Normally, this theorem shouldn't be used outside of this section, because it requires hard-coded index values. Instead, use strslfv 13077. (Contributed by NM, 9-Sep-2011.) (Revised by Jim Kingdon, 19-Jan-2023.) (New usage is discouraged.)

Hypotheses
Ref Expression
strnfvn.f  |-  S  e. 
_V
strnfvn.c  |-  E  = Slot 
N
strnfvn.n  |-  N  e.  NN
Assertion
Ref Expression
strnfvn  |-  ( E `
 S )  =  ( S `  N
)

Proof of Theorem strnfvn
StepHypRef Expression
1 strnfvn.c . . 3  |-  E  = Slot 
N
2 strnfvn.f . . . 4  |-  S  e. 
_V
32a1i 9 . . 3  |-  ( T. 
->  S  e.  _V )
4 strnfvn.n . . . 4  |-  N  e.  NN
54a1i 9 . . 3  |-  ( T. 
->  N  e.  NN )
61, 3, 5strnfvnd 13052 . 2  |-  ( T. 
->  ( E `  S
)  =  ( S `
 N ) )
76mptru 1404 1  |-  ( E `
 S )  =  ( S `  N
)
Colors of variables: wff set class
Syntax hints:    = wceq 1395   T. wtru 1396    e. wcel 2200   _Vcvv 2799   ` cfv 5318   NNcn 9110  Slot cslot 13031
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-un 4524
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rex 2514  df-v 2801  df-sbc 3029  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-mpt 4147  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-rn 4730  df-iota 5278  df-fun 5320  df-fv 5326  df-slot 13036
This theorem is referenced by:  ndxarg  13055  strsl0  13081  baseval  13085
  Copyright terms: Public domain W3C validator