ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strnfvn Unicode version

Theorem strnfvn 12699
Description: Value of a structure component extractor  E. Normally,  E is a defined constant symbol such as  Base (df-base 12684) and  N is a fixed integer such as  1.  S is a structure, i.e. a specific member of a class of structures.

Note: Normally, this theorem shouldn't be used outside of this section, because it requires hard-coded index values. Instead, use strslfv 12723. (Contributed by NM, 9-Sep-2011.) (Revised by Jim Kingdon, 19-Jan-2023.) (New usage is discouraged.)

Hypotheses
Ref Expression
strnfvn.f  |-  S  e. 
_V
strnfvn.c  |-  E  = Slot 
N
strnfvn.n  |-  N  e.  NN
Assertion
Ref Expression
strnfvn  |-  ( E `
 S )  =  ( S `  N
)

Proof of Theorem strnfvn
StepHypRef Expression
1 strnfvn.c . . 3  |-  E  = Slot 
N
2 strnfvn.f . . . 4  |-  S  e. 
_V
32a1i 9 . . 3  |-  ( T. 
->  S  e.  _V )
4 strnfvn.n . . . 4  |-  N  e.  NN
54a1i 9 . . 3  |-  ( T. 
->  N  e.  NN )
61, 3, 5strnfvnd 12698 . 2  |-  ( T. 
->  ( E `  S
)  =  ( S `
 N ) )
76mptru 1373 1  |-  ( E `
 S )  =  ( S `  N
)
Colors of variables: wff set class
Syntax hints:    = wceq 1364   T. wtru 1365    e. wcel 2167   _Vcvv 2763   ` cfv 5258   NNcn 8990  Slot cslot 12677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-iota 5219  df-fun 5260  df-fv 5266  df-slot 12682
This theorem is referenced by:  ndxarg  12701  strsl0  12727  baseval  12731
  Copyright terms: Public domain W3C validator