ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strnfvn Unicode version

Theorem strnfvn 12639
Description: Value of a structure component extractor  E. Normally,  E is a defined constant symbol such as  Base (df-base 12624) and  N is a fixed integer such as  1.  S is a structure, i.e. a specific member of a class of structures.

Note: Normally, this theorem shouldn't be used outside of this section, because it requires hard-coded index values. Instead, use strslfv 12663. (Contributed by NM, 9-Sep-2011.) (Revised by Jim Kingdon, 19-Jan-2023.) (New usage is discouraged.)

Hypotheses
Ref Expression
strnfvn.f  |-  S  e. 
_V
strnfvn.c  |-  E  = Slot 
N
strnfvn.n  |-  N  e.  NN
Assertion
Ref Expression
strnfvn  |-  ( E `
 S )  =  ( S `  N
)

Proof of Theorem strnfvn
StepHypRef Expression
1 strnfvn.c . . 3  |-  E  = Slot 
N
2 strnfvn.f . . . 4  |-  S  e. 
_V
32a1i 9 . . 3  |-  ( T. 
->  S  e.  _V )
4 strnfvn.n . . . 4  |-  N  e.  NN
54a1i 9 . . 3  |-  ( T. 
->  N  e.  NN )
61, 3, 5strnfvnd 12638 . 2  |-  ( T. 
->  ( E `  S
)  =  ( S `
 N ) )
76mptru 1373 1  |-  ( E `
 S )  =  ( S `  N
)
Colors of variables: wff set class
Syntax hints:    = wceq 1364   T. wtru 1365    e. wcel 2164   _Vcvv 2760   ` cfv 5254   NNcn 8982  Slot cslot 12617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-sbc 2986  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-mpt 4092  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-iota 5215  df-fun 5256  df-fv 5262  df-slot 12622
This theorem is referenced by:  ndxarg  12641  strsl0  12667  baseval  12671
  Copyright terms: Public domain W3C validator