ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strnfvn Unicode version

Theorem strnfvn 12475
Description: Value of a structure component extractor  E. Normally,  E is a defined constant symbol such as  Base (df-base 12460) and  N is a fixed integer such as  1.  S is a structure, i.e. a specific member of a class of structures.

Note: Normally, this theorem shouldn't be used outside of this section, because it requires hard-coded index values. Instead, use strslfv 12499. (Contributed by NM, 9-Sep-2011.) (Revised by Jim Kingdon, 19-Jan-2023.) (New usage is discouraged.)

Hypotheses
Ref Expression
strnfvn.f  |-  S  e. 
_V
strnfvn.c  |-  E  = Slot 
N
strnfvn.n  |-  N  e.  NN
Assertion
Ref Expression
strnfvn  |-  ( E `
 S )  =  ( S `  N
)

Proof of Theorem strnfvn
StepHypRef Expression
1 strnfvn.c . . 3  |-  E  = Slot 
N
2 strnfvn.f . . . 4  |-  S  e. 
_V
32a1i 9 . . 3  |-  ( T. 
->  S  e.  _V )
4 strnfvn.n . . . 4  |-  N  e.  NN
54a1i 9 . . 3  |-  ( T. 
->  N  e.  NN )
61, 3, 5strnfvnd 12474 . 2  |-  ( T. 
->  ( E `  S
)  =  ( S `
 N ) )
76mptru 1362 1  |-  ( E `
 S )  =  ( S `  N
)
Colors of variables: wff set class
Syntax hints:    = wceq 1353   T. wtru 1354    e. wcel 2148   _Vcvv 2737   ` cfv 5215   NNcn 8915  Slot cslot 12453
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4120  ax-pow 4173  ax-pr 4208  ax-un 4432
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ral 2460  df-rex 2461  df-v 2739  df-sbc 2963  df-un 3133  df-in 3135  df-ss 3142  df-pw 3577  df-sn 3598  df-pr 3599  df-op 3601  df-uni 3810  df-br 4003  df-opab 4064  df-mpt 4065  df-id 4292  df-xp 4631  df-rel 4632  df-cnv 4633  df-co 4634  df-dm 4635  df-rn 4636  df-iota 5177  df-fun 5217  df-fv 5223  df-slot 12458
This theorem is referenced by:  ndxarg  12477  strsl0  12503  baseval  12507
  Copyright terms: Public domain W3C validator