| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > strnfvn | GIF version | ||
| Description: Value of a structure
component extractor 𝐸. Normally, 𝐸 is a
defined constant symbol such as Base (df-base 12809) and 𝑁 is a
fixed integer such as 1. 𝑆 is a structure, i.e. a
specific
member of a class of structures.
Note: Normally, this theorem shouldn't be used outside of this section, because it requires hard-coded index values. Instead, use strslfv 12848. (Contributed by NM, 9-Sep-2011.) (Revised by Jim Kingdon, 19-Jan-2023.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| strnfvn.f | ⊢ 𝑆 ∈ V |
| strnfvn.c | ⊢ 𝐸 = Slot 𝑁 |
| strnfvn.n | ⊢ 𝑁 ∈ ℕ |
| Ref | Expression |
|---|---|
| strnfvn | ⊢ (𝐸‘𝑆) = (𝑆‘𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | strnfvn.c | . . 3 ⊢ 𝐸 = Slot 𝑁 | |
| 2 | strnfvn.f | . . . 4 ⊢ 𝑆 ∈ V | |
| 3 | 2 | a1i 9 | . . 3 ⊢ (⊤ → 𝑆 ∈ V) |
| 4 | strnfvn.n | . . . 4 ⊢ 𝑁 ∈ ℕ | |
| 5 | 4 | a1i 9 | . . 3 ⊢ (⊤ → 𝑁 ∈ ℕ) |
| 6 | 1, 3, 5 | strnfvnd 12823 | . 2 ⊢ (⊤ → (𝐸‘𝑆) = (𝑆‘𝑁)) |
| 7 | 6 | mptru 1381 | 1 ⊢ (𝐸‘𝑆) = (𝑆‘𝑁) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1372 ⊤wtru 1373 ∈ wcel 2175 Vcvv 2771 ‘cfv 5270 ℕcn 9035 Slot cslot 12802 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1375 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-rex 2489 df-v 2773 df-sbc 2998 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-iota 5231 df-fun 5272 df-fv 5278 df-slot 12807 |
| This theorem is referenced by: ndxarg 12826 strsl0 12852 baseval 12856 |
| Copyright terms: Public domain | W3C validator |