![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > strnfvn | GIF version |
Description: Value of a structure
component extractor 𝐸. Normally, 𝐸 is a
defined constant symbol such as Base (df-base 12627) and 𝑁 is a
fixed integer such as 1. 𝑆 is a structure, i.e. a
specific
member of a class of structures.
Note: Normally, this theorem shouldn't be used outside of this section, because it requires hard-coded index values. Instead, use strslfv 12666. (Contributed by NM, 9-Sep-2011.) (Revised by Jim Kingdon, 19-Jan-2023.) (New usage is discouraged.) |
Ref | Expression |
---|---|
strnfvn.f | ⊢ 𝑆 ∈ V |
strnfvn.c | ⊢ 𝐸 = Slot 𝑁 |
strnfvn.n | ⊢ 𝑁 ∈ ℕ |
Ref | Expression |
---|---|
strnfvn | ⊢ (𝐸‘𝑆) = (𝑆‘𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | strnfvn.c | . . 3 ⊢ 𝐸 = Slot 𝑁 | |
2 | strnfvn.f | . . . 4 ⊢ 𝑆 ∈ V | |
3 | 2 | a1i 9 | . . 3 ⊢ (⊤ → 𝑆 ∈ V) |
4 | strnfvn.n | . . . 4 ⊢ 𝑁 ∈ ℕ | |
5 | 4 | a1i 9 | . . 3 ⊢ (⊤ → 𝑁 ∈ ℕ) |
6 | 1, 3, 5 | strnfvnd 12641 | . 2 ⊢ (⊤ → (𝐸‘𝑆) = (𝑆‘𝑁)) |
7 | 6 | mptru 1373 | 1 ⊢ (𝐸‘𝑆) = (𝑆‘𝑁) |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 ⊤wtru 1365 ∈ wcel 2164 Vcvv 2760 ‘cfv 5255 ℕcn 8984 Slot cslot 12620 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4148 ax-pow 4204 ax-pr 4239 ax-un 4465 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2987 df-un 3158 df-in 3160 df-ss 3167 df-pw 3604 df-sn 3625 df-pr 3626 df-op 3628 df-uni 3837 df-br 4031 df-opab 4092 df-mpt 4093 df-id 4325 df-xp 4666 df-rel 4667 df-cnv 4668 df-co 4669 df-dm 4670 df-rn 4671 df-iota 5216 df-fun 5257 df-fv 5263 df-slot 12625 |
This theorem is referenced by: ndxarg 12644 strsl0 12670 baseval 12674 |
Copyright terms: Public domain | W3C validator |