| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > strnfvn | GIF version | ||
| Description: Value of a structure
component extractor 𝐸. Normally, 𝐸 is a
defined constant symbol such as Base (df-base 12953) and 𝑁 is a
fixed integer such as 1. 𝑆 is a structure, i.e. a
specific
member of a class of structures.
Note: Normally, this theorem shouldn't be used outside of this section, because it requires hard-coded index values. Instead, use strslfv 12992. (Contributed by NM, 9-Sep-2011.) (Revised by Jim Kingdon, 19-Jan-2023.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| strnfvn.f | ⊢ 𝑆 ∈ V |
| strnfvn.c | ⊢ 𝐸 = Slot 𝑁 |
| strnfvn.n | ⊢ 𝑁 ∈ ℕ |
| Ref | Expression |
|---|---|
| strnfvn | ⊢ (𝐸‘𝑆) = (𝑆‘𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | strnfvn.c | . . 3 ⊢ 𝐸 = Slot 𝑁 | |
| 2 | strnfvn.f | . . . 4 ⊢ 𝑆 ∈ V | |
| 3 | 2 | a1i 9 | . . 3 ⊢ (⊤ → 𝑆 ∈ V) |
| 4 | strnfvn.n | . . . 4 ⊢ 𝑁 ∈ ℕ | |
| 5 | 4 | a1i 9 | . . 3 ⊢ (⊤ → 𝑁 ∈ ℕ) |
| 6 | 1, 3, 5 | strnfvnd 12967 | . 2 ⊢ (⊤ → (𝐸‘𝑆) = (𝑆‘𝑁)) |
| 7 | 6 | mptru 1382 | 1 ⊢ (𝐸‘𝑆) = (𝑆‘𝑁) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ⊤wtru 1374 ∈ wcel 2178 Vcvv 2776 ‘cfv 5290 ℕcn 9071 Slot cslot 12946 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ral 2491 df-rex 2492 df-v 2778 df-sbc 3006 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-iota 5251 df-fun 5292 df-fv 5298 df-slot 12951 |
| This theorem is referenced by: ndxarg 12970 strsl0 12996 baseval 13000 |
| Copyright terms: Public domain | W3C validator |