Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > strnfvn | GIF version |
Description: Value of a structure
component extractor 𝐸. Normally, 𝐸 is a
defined constant symbol such as Base (df-base 12400) and 𝑁 is a
fixed integer such as 1. 𝑆 is a structure, i.e. a
specific
member of a class of structures.
Note: Normally, this theorem shouldn't be used outside of this section, because it requires hard-coded index values. Instead, use strslfv 12438. (Contributed by NM, 9-Sep-2011.) (Revised by Jim Kingdon, 19-Jan-2023.) (New usage is discouraged.) |
Ref | Expression |
---|---|
strnfvn.f | ⊢ 𝑆 ∈ V |
strnfvn.c | ⊢ 𝐸 = Slot 𝑁 |
strnfvn.n | ⊢ 𝑁 ∈ ℕ |
Ref | Expression |
---|---|
strnfvn | ⊢ (𝐸‘𝑆) = (𝑆‘𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | strnfvn.c | . . 3 ⊢ 𝐸 = Slot 𝑁 | |
2 | strnfvn.f | . . . 4 ⊢ 𝑆 ∈ V | |
3 | 2 | a1i 9 | . . 3 ⊢ (⊤ → 𝑆 ∈ V) |
4 | strnfvn.n | . . . 4 ⊢ 𝑁 ∈ ℕ | |
5 | 4 | a1i 9 | . . 3 ⊢ (⊤ → 𝑁 ∈ ℕ) |
6 | 1, 3, 5 | strnfvnd 12414 | . 2 ⊢ (⊤ → (𝐸‘𝑆) = (𝑆‘𝑁)) |
7 | 6 | mptru 1352 | 1 ⊢ (𝐸‘𝑆) = (𝑆‘𝑁) |
Colors of variables: wff set class |
Syntax hints: = wceq 1343 ⊤wtru 1344 ∈ wcel 2136 Vcvv 2726 ‘cfv 5188 ℕcn 8857 Slot cslot 12393 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-v 2728 df-sbc 2952 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-iota 5153 df-fun 5190 df-fv 5196 df-slot 12398 |
This theorem is referenced by: ndxarg 12417 strsl0 12442 baseval 12446 |
Copyright terms: Public domain | W3C validator |