| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > strnfvn | GIF version | ||
| Description: Value of a structure
component extractor 𝐸. Normally, 𝐸 is a
defined constant symbol such as Base (df-base 12838) and 𝑁 is a
fixed integer such as 1. 𝑆 is a structure, i.e. a
specific
member of a class of structures.
Note: Normally, this theorem shouldn't be used outside of this section, because it requires hard-coded index values. Instead, use strslfv 12877. (Contributed by NM, 9-Sep-2011.) (Revised by Jim Kingdon, 19-Jan-2023.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| strnfvn.f | ⊢ 𝑆 ∈ V |
| strnfvn.c | ⊢ 𝐸 = Slot 𝑁 |
| strnfvn.n | ⊢ 𝑁 ∈ ℕ |
| Ref | Expression |
|---|---|
| strnfvn | ⊢ (𝐸‘𝑆) = (𝑆‘𝑁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | strnfvn.c | . . 3 ⊢ 𝐸 = Slot 𝑁 | |
| 2 | strnfvn.f | . . . 4 ⊢ 𝑆 ∈ V | |
| 3 | 2 | a1i 9 | . . 3 ⊢ (⊤ → 𝑆 ∈ V) |
| 4 | strnfvn.n | . . . 4 ⊢ 𝑁 ∈ ℕ | |
| 5 | 4 | a1i 9 | . . 3 ⊢ (⊤ → 𝑁 ∈ ℕ) |
| 6 | 1, 3, 5 | strnfvnd 12852 | . 2 ⊢ (⊤ → (𝐸‘𝑆) = (𝑆‘𝑁)) |
| 7 | 6 | mptru 1382 | 1 ⊢ (𝐸‘𝑆) = (𝑆‘𝑁) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ⊤wtru 1374 ∈ wcel 2176 Vcvv 2772 ‘cfv 5271 ℕcn 9036 Slot cslot 12831 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ral 2489 df-rex 2490 df-v 2774 df-sbc 2999 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-iota 5232 df-fun 5273 df-fv 5279 df-slot 12836 |
| This theorem is referenced by: ndxarg 12855 strsl0 12881 baseval 12885 |
| Copyright terms: Public domain | W3C validator |