| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > strslfv3 | GIF version | ||
| Description: Variant on strslfv 12748 for large structures. (Contributed by Mario Carneiro, 10-Jan-2017.) (Revised by Jim Kingdon, 30-Jan-2023.) |
| Ref | Expression |
|---|---|
| strfv3.u | ⊢ (𝜑 → 𝑈 = 𝑆) |
| strslfv3.s | ⊢ (𝜑 → 𝑆 Struct 𝑋) |
| strslfv3.e | ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) |
| strslfv3.n | ⊢ (𝜑 → {〈(𝐸‘ndx), 𝐶〉} ⊆ 𝑆) |
| strfv3.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
| strfv3.a | ⊢ 𝐴 = (𝐸‘𝑈) |
| Ref | Expression |
|---|---|
| strslfv3 | ⊢ (𝜑 → 𝐴 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | strfv3.a | . 2 ⊢ 𝐴 = (𝐸‘𝑈) | |
| 2 | strslfv3.e | . . 3 ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) | |
| 3 | strfv3.u | . . . 4 ⊢ (𝜑 → 𝑈 = 𝑆) | |
| 4 | strslfv3.s | . . . . 5 ⊢ (𝜑 → 𝑆 Struct 𝑋) | |
| 5 | structex 12715 | . . . . 5 ⊢ (𝑆 Struct 𝑋 → 𝑆 ∈ V) | |
| 6 | 4, 5 | syl 14 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ V) |
| 7 | 3, 6 | eqeltrd 2273 | . . 3 ⊢ (𝜑 → 𝑈 ∈ V) |
| 8 | structfung 12720 | . . . . 5 ⊢ (𝑆 Struct 𝑋 → Fun ◡◡𝑆) | |
| 9 | 4, 8 | syl 14 | . . . 4 ⊢ (𝜑 → Fun ◡◡𝑆) |
| 10 | 3 | cnveqd 4843 | . . . . . 6 ⊢ (𝜑 → ◡𝑈 = ◡𝑆) |
| 11 | 10 | cnveqd 4843 | . . . . 5 ⊢ (𝜑 → ◡◡𝑈 = ◡◡𝑆) |
| 12 | 11 | funeqd 5281 | . . . 4 ⊢ (𝜑 → (Fun ◡◡𝑈 ↔ Fun ◡◡𝑆)) |
| 13 | 9, 12 | mpbird 167 | . . 3 ⊢ (𝜑 → Fun ◡◡𝑈) |
| 14 | strslfv3.n | . . . . 5 ⊢ (𝜑 → {〈(𝐸‘ndx), 𝐶〉} ⊆ 𝑆) | |
| 15 | 2 | simpri 113 | . . . . . . 7 ⊢ (𝐸‘ndx) ∈ ℕ |
| 16 | strfv3.c | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
| 17 | opexg 4262 | . . . . . . 7 ⊢ (((𝐸‘ndx) ∈ ℕ ∧ 𝐶 ∈ 𝑉) → 〈(𝐸‘ndx), 𝐶〉 ∈ V) | |
| 18 | 15, 16, 17 | sylancr 414 | . . . . . 6 ⊢ (𝜑 → 〈(𝐸‘ndx), 𝐶〉 ∈ V) |
| 19 | snssg 3757 | . . . . . 6 ⊢ (〈(𝐸‘ndx), 𝐶〉 ∈ V → (〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆 ↔ {〈(𝐸‘ndx), 𝐶〉} ⊆ 𝑆)) | |
| 20 | 18, 19 | syl 14 | . . . . 5 ⊢ (𝜑 → (〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆 ↔ {〈(𝐸‘ndx), 𝐶〉} ⊆ 𝑆)) |
| 21 | 14, 20 | mpbird 167 | . . . 4 ⊢ (𝜑 → 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆) |
| 22 | 21, 3 | eleqtrrd 2276 | . . 3 ⊢ (𝜑 → 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑈) |
| 23 | 2, 7, 13, 22, 16 | strslfv2d 12746 | . 2 ⊢ (𝜑 → 𝐶 = (𝐸‘𝑈)) |
| 24 | 1, 23 | eqtr4id 2248 | 1 ⊢ (𝜑 → 𝐴 = 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 Vcvv 2763 ⊆ wss 3157 {csn 3623 〈cop 3626 class class class wbr 4034 ◡ccnv 4663 Fun wfun 5253 ‘cfv 5259 ℕcn 9007 Struct cstr 12699 ndxcnx 12700 Slot cslot 12702 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-iota 5220 df-fun 5261 df-fv 5267 df-struct 12705 df-slot 12707 |
| This theorem is referenced by: prdsbaslemss 12976 |
| Copyright terms: Public domain | W3C validator |