ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strslfv3 GIF version

Theorem strslfv3 12034
Description: Variant on strslfv 12033 for large structures. (Contributed by Mario Carneiro, 10-Jan-2017.) (Revised by Jim Kingdon, 30-Jan-2023.)
Hypotheses
Ref Expression
strfv3.u (𝜑𝑈 = 𝑆)
strfv3.s 𝑆 Struct 𝑋
strslfv3.e (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)
strfv3.n {⟨(𝐸‘ndx), 𝐶⟩} ⊆ 𝑆
strfv3.c (𝜑𝐶𝑉)
strfv3.a 𝐴 = (𝐸𝑈)
Assertion
Ref Expression
strslfv3 (𝜑𝐴 = 𝐶)

Proof of Theorem strslfv3
StepHypRef Expression
1 strfv3.a . 2 𝐴 = (𝐸𝑈)
2 strfv3.c . . . 4 (𝜑𝐶𝑉)
3 strfv3.s . . . . 5 𝑆 Struct 𝑋
4 strslfv3.e . . . . 5 (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)
5 strfv3.n . . . . 5 {⟨(𝐸‘ndx), 𝐶⟩} ⊆ 𝑆
63, 4, 5strslfv 12033 . . . 4 (𝐶𝑉𝐶 = (𝐸𝑆))
72, 6syl 14 . . 3 (𝜑𝐶 = (𝐸𝑆))
8 strfv3.u . . . 4 (𝜑𝑈 = 𝑆)
98fveq2d 5429 . . 3 (𝜑 → (𝐸𝑈) = (𝐸𝑆))
107, 9eqtr4d 2176 . 2 (𝜑𝐶 = (𝐸𝑈))
111, 10eqtr4id 2192 1 (𝜑𝐴 = 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1332  wcel 1481  wss 3072  {csn 3528  cop 3531   class class class wbr 3933  cfv 5127  cn 8740   Struct cstr 11985  ndxcnx 11986  Slot cslot 11988
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-sep 4050  ax-pow 4102  ax-pr 4135  ax-un 4359
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ne 2310  df-ral 2422  df-rex 2423  df-rab 2426  df-v 2689  df-sbc 2911  df-dif 3074  df-un 3076  df-in 3078  df-ss 3085  df-nul 3365  df-pw 3513  df-sn 3534  df-pr 3535  df-op 3537  df-uni 3741  df-br 3934  df-opab 3994  df-mpt 3995  df-id 4219  df-xp 4549  df-rel 4550  df-cnv 4551  df-co 4552  df-dm 4553  df-rn 4554  df-res 4555  df-iota 5092  df-fun 5129  df-fv 5135  df-struct 11991  df-slot 11993
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator