ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strslfv3 GIF version

Theorem strslfv3 13044
Description: Variant on strslfv 13043 for large structures. (Contributed by Mario Carneiro, 10-Jan-2017.) (Revised by Jim Kingdon, 30-Jan-2023.)
Hypotheses
Ref Expression
strfv3.u (𝜑𝑈 = 𝑆)
strslfv3.s (𝜑𝑆 Struct 𝑋)
strslfv3.e (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)
strslfv3.n (𝜑 → {⟨(𝐸‘ndx), 𝐶⟩} ⊆ 𝑆)
strfv3.c (𝜑𝐶𝑉)
strfv3.a 𝐴 = (𝐸𝑈)
Assertion
Ref Expression
strslfv3 (𝜑𝐴 = 𝐶)

Proof of Theorem strslfv3
StepHypRef Expression
1 strfv3.a . 2 𝐴 = (𝐸𝑈)
2 strslfv3.e . . 3 (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)
3 strfv3.u . . . 4 (𝜑𝑈 = 𝑆)
4 strslfv3.s . . . . 5 (𝜑𝑆 Struct 𝑋)
5 structex 13010 . . . . 5 (𝑆 Struct 𝑋𝑆 ∈ V)
64, 5syl 14 . . . 4 (𝜑𝑆 ∈ V)
73, 6eqeltrd 2286 . . 3 (𝜑𝑈 ∈ V)
8 structfung 13015 . . . . 5 (𝑆 Struct 𝑋 → Fun 𝑆)
94, 8syl 14 . . . 4 (𝜑 → Fun 𝑆)
103cnveqd 4875 . . . . . 6 (𝜑𝑈 = 𝑆)
1110cnveqd 4875 . . . . 5 (𝜑𝑈 = 𝑆)
1211funeqd 5316 . . . 4 (𝜑 → (Fun 𝑈 ↔ Fun 𝑆))
139, 12mpbird 167 . . 3 (𝜑 → Fun 𝑈)
14 strslfv3.n . . . . 5 (𝜑 → {⟨(𝐸‘ndx), 𝐶⟩} ⊆ 𝑆)
152simpri 113 . . . . . . 7 (𝐸‘ndx) ∈ ℕ
16 strfv3.c . . . . . . 7 (𝜑𝐶𝑉)
17 opexg 4293 . . . . . . 7 (((𝐸‘ndx) ∈ ℕ ∧ 𝐶𝑉) → ⟨(𝐸‘ndx), 𝐶⟩ ∈ V)
1815, 16, 17sylancr 414 . . . . . 6 (𝜑 → ⟨(𝐸‘ndx), 𝐶⟩ ∈ V)
19 snssg 3781 . . . . . 6 (⟨(𝐸‘ndx), 𝐶⟩ ∈ V → (⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑆 ↔ {⟨(𝐸‘ndx), 𝐶⟩} ⊆ 𝑆))
2018, 19syl 14 . . . . 5 (𝜑 → (⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑆 ↔ {⟨(𝐸‘ndx), 𝐶⟩} ⊆ 𝑆))
2114, 20mpbird 167 . . . 4 (𝜑 → ⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑆)
2221, 3eleqtrrd 2289 . . 3 (𝜑 → ⟨(𝐸‘ndx), 𝐶⟩ ∈ 𝑈)
232, 7, 13, 22, 16strslfv2d 13041 . 2 (𝜑𝐶 = (𝐸𝑈))
241, 23eqtr4id 2261 1 (𝜑𝐴 = 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1375  wcel 2180  Vcvv 2779  wss 3177  {csn 3646  cop 3649   class class class wbr 4062  ccnv 4695  Fun wfun 5288  cfv 5294  cn 9078   Struct cstr 12994  ndxcnx 12995  Slot cslot 12997
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 713  ax-5 1473  ax-7 1474  ax-gen 1475  ax-ie1 1519  ax-ie2 1520  ax-8 1530  ax-10 1531  ax-11 1532  ax-i12 1533  ax-bndl 1535  ax-4 1536  ax-17 1552  ax-i9 1556  ax-ial 1560  ax-i5r 1561  ax-13 2182  ax-14 2183  ax-ext 2191  ax-sep 4181  ax-pow 4237  ax-pr 4272  ax-un 4501
This theorem depends on definitions:  df-bi 117  df-3an 985  df-tru 1378  df-fal 1381  df-nf 1487  df-sb 1789  df-eu 2060  df-mo 2061  df-clab 2196  df-cleq 2202  df-clel 2205  df-nfc 2341  df-ne 2381  df-ral 2493  df-rex 2494  df-rab 2497  df-v 2781  df-sbc 3009  df-dif 3179  df-un 3181  df-in 3183  df-ss 3190  df-nul 3472  df-pw 3631  df-sn 3652  df-pr 3653  df-op 3655  df-uni 3868  df-br 4063  df-opab 4125  df-mpt 4126  df-id 4361  df-xp 4702  df-rel 4703  df-cnv 4704  df-co 4705  df-dm 4706  df-rn 4707  df-res 4708  df-iota 5254  df-fun 5296  df-fv 5302  df-struct 13000  df-slot 13002
This theorem is referenced by:  prdsbaslemss  13273
  Copyright terms: Public domain W3C validator