Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > strslfv3 | GIF version |
Description: Variant on strslfv 12438 for large structures. (Contributed by Mario Carneiro, 10-Jan-2017.) (Revised by Jim Kingdon, 30-Jan-2023.) |
Ref | Expression |
---|---|
strfv3.u | ⊢ (𝜑 → 𝑈 = 𝑆) |
strfv3.s | ⊢ 𝑆 Struct 𝑋 |
strslfv3.e | ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) |
strfv3.n | ⊢ {〈(𝐸‘ndx), 𝐶〉} ⊆ 𝑆 |
strfv3.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
strfv3.a | ⊢ 𝐴 = (𝐸‘𝑈) |
Ref | Expression |
---|---|
strslfv3 | ⊢ (𝜑 → 𝐴 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | strfv3.a | . 2 ⊢ 𝐴 = (𝐸‘𝑈) | |
2 | strfv3.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
3 | strfv3.s | . . . . 5 ⊢ 𝑆 Struct 𝑋 | |
4 | strslfv3.e | . . . . 5 ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) | |
5 | strfv3.n | . . . . 5 ⊢ {〈(𝐸‘ndx), 𝐶〉} ⊆ 𝑆 | |
6 | 3, 4, 5 | strslfv 12438 | . . . 4 ⊢ (𝐶 ∈ 𝑉 → 𝐶 = (𝐸‘𝑆)) |
7 | 2, 6 | syl 14 | . . 3 ⊢ (𝜑 → 𝐶 = (𝐸‘𝑆)) |
8 | strfv3.u | . . . 4 ⊢ (𝜑 → 𝑈 = 𝑆) | |
9 | 8 | fveq2d 5490 | . . 3 ⊢ (𝜑 → (𝐸‘𝑈) = (𝐸‘𝑆)) |
10 | 7, 9 | eqtr4d 2201 | . 2 ⊢ (𝜑 → 𝐶 = (𝐸‘𝑈)) |
11 | 1, 10 | eqtr4id 2218 | 1 ⊢ (𝜑 → 𝐴 = 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1343 ∈ wcel 2136 ⊆ wss 3116 {csn 3576 〈cop 3579 class class class wbr 3982 ‘cfv 5188 ℕcn 8857 Struct cstr 12390 ndxcnx 12391 Slot cslot 12393 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-sbc 2952 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-iota 5153 df-fun 5190 df-fv 5196 df-struct 12396 df-slot 12398 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |