Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > strslfv3 | GIF version |
Description: Variant on strslfv 12473 for large structures. (Contributed by Mario Carneiro, 10-Jan-2017.) (Revised by Jim Kingdon, 30-Jan-2023.) |
Ref | Expression |
---|---|
strfv3.u | ⊢ (𝜑 → 𝑈 = 𝑆) |
strfv3.s | ⊢ 𝑆 Struct 𝑋 |
strslfv3.e | ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) |
strfv3.n | ⊢ {〈(𝐸‘ndx), 𝐶〉} ⊆ 𝑆 |
strfv3.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
strfv3.a | ⊢ 𝐴 = (𝐸‘𝑈) |
Ref | Expression |
---|---|
strslfv3 | ⊢ (𝜑 → 𝐴 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | strfv3.a | . 2 ⊢ 𝐴 = (𝐸‘𝑈) | |
2 | strfv3.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
3 | strfv3.s | . . . . 5 ⊢ 𝑆 Struct 𝑋 | |
4 | strslfv3.e | . . . . 5 ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) | |
5 | strfv3.n | . . . . 5 ⊢ {〈(𝐸‘ndx), 𝐶〉} ⊆ 𝑆 | |
6 | 3, 4, 5 | strslfv 12473 | . . . 4 ⊢ (𝐶 ∈ 𝑉 → 𝐶 = (𝐸‘𝑆)) |
7 | 2, 6 | syl 14 | . . 3 ⊢ (𝜑 → 𝐶 = (𝐸‘𝑆)) |
8 | strfv3.u | . . . 4 ⊢ (𝜑 → 𝑈 = 𝑆) | |
9 | 8 | fveq2d 5511 | . . 3 ⊢ (𝜑 → (𝐸‘𝑈) = (𝐸‘𝑆)) |
10 | 7, 9 | eqtr4d 2211 | . 2 ⊢ (𝜑 → 𝐶 = (𝐸‘𝑈)) |
11 | 1, 10 | eqtr4id 2227 | 1 ⊢ (𝜑 → 𝐴 = 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 = wceq 1353 ∈ wcel 2146 ⊆ wss 3127 {csn 3589 〈cop 3592 class class class wbr 3998 ‘cfv 5208 ℕcn 8892 Struct cstr 12425 ndxcnx 12426 Slot cslot 12428 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1445 ax-7 1446 ax-gen 1447 ax-ie1 1491 ax-ie2 1492 ax-8 1502 ax-10 1503 ax-11 1504 ax-i12 1505 ax-bndl 1507 ax-4 1508 ax-17 1524 ax-i9 1528 ax-ial 1532 ax-i5r 1533 ax-13 2148 ax-14 2149 ax-ext 2157 ax-sep 4116 ax-pow 4169 ax-pr 4203 ax-un 4427 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1459 df-sb 1761 df-eu 2027 df-mo 2028 df-clab 2162 df-cleq 2168 df-clel 2171 df-nfc 2306 df-ne 2346 df-ral 2458 df-rex 2459 df-rab 2462 df-v 2737 df-sbc 2961 df-dif 3129 df-un 3131 df-in 3133 df-ss 3140 df-nul 3421 df-pw 3574 df-sn 3595 df-pr 3596 df-op 3598 df-uni 3806 df-br 3999 df-opab 4060 df-mpt 4061 df-id 4287 df-xp 4626 df-rel 4627 df-cnv 4628 df-co 4629 df-dm 4630 df-rn 4631 df-res 4632 df-iota 5170 df-fun 5210 df-fv 5216 df-struct 12431 df-slot 12433 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |