![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > strslfv3 | GIF version |
Description: Variant on strslfv 11785 for large structures. (Contributed by Mario Carneiro, 10-Jan-2017.) (Revised by Jim Kingdon, 30-Jan-2023.) |
Ref | Expression |
---|---|
strfv3.u | ⊢ (𝜑 → 𝑈 = 𝑆) |
strfv3.s | ⊢ 𝑆 Struct 𝑋 |
strslfv3.e | ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) |
strfv3.n | ⊢ {〈(𝐸‘ndx), 𝐶〉} ⊆ 𝑆 |
strfv3.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
strfv3.a | ⊢ 𝐴 = (𝐸‘𝑈) |
Ref | Expression |
---|---|
strslfv3 | ⊢ (𝜑 → 𝐴 = 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | strfv3.c | . . . 4 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
2 | strfv3.s | . . . . 5 ⊢ 𝑆 Struct 𝑋 | |
3 | strslfv3.e | . . . . 5 ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) | |
4 | strfv3.n | . . . . 5 ⊢ {〈(𝐸‘ndx), 𝐶〉} ⊆ 𝑆 | |
5 | 2, 3, 4 | strslfv 11785 | . . . 4 ⊢ (𝐶 ∈ 𝑉 → 𝐶 = (𝐸‘𝑆)) |
6 | 1, 5 | syl 14 | . . 3 ⊢ (𝜑 → 𝐶 = (𝐸‘𝑆)) |
7 | strfv3.u | . . . 4 ⊢ (𝜑 → 𝑈 = 𝑆) | |
8 | 7 | fveq2d 5357 | . . 3 ⊢ (𝜑 → (𝐸‘𝑈) = (𝐸‘𝑆)) |
9 | 6, 8 | eqtr4d 2135 | . 2 ⊢ (𝜑 → 𝐶 = (𝐸‘𝑈)) |
10 | strfv3.a | . 2 ⊢ 𝐴 = (𝐸‘𝑈) | |
11 | 9, 10 | syl6reqr 2151 | 1 ⊢ (𝜑 → 𝐴 = 𝐶) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 = wceq 1299 ∈ wcel 1448 ⊆ wss 3021 {csn 3474 〈cop 3477 class class class wbr 3875 ‘cfv 5059 ℕcn 8578 Struct cstr 11737 ndxcnx 11738 Slot cslot 11740 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 584 ax-in2 585 ax-io 671 ax-5 1391 ax-7 1392 ax-gen 1393 ax-ie1 1437 ax-ie2 1438 ax-8 1450 ax-10 1451 ax-11 1452 ax-i12 1453 ax-bndl 1454 ax-4 1455 ax-13 1459 ax-14 1460 ax-17 1474 ax-i9 1478 ax-ial 1482 ax-i5r 1483 ax-ext 2082 ax-sep 3986 ax-pow 4038 ax-pr 4069 ax-un 4293 |
This theorem depends on definitions: df-bi 116 df-3an 932 df-tru 1302 df-fal 1305 df-nf 1405 df-sb 1704 df-eu 1963 df-mo 1964 df-clab 2087 df-cleq 2093 df-clel 2096 df-nfc 2229 df-ne 2268 df-ral 2380 df-rex 2381 df-rab 2384 df-v 2643 df-sbc 2863 df-dif 3023 df-un 3025 df-in 3027 df-ss 3034 df-nul 3311 df-pw 3459 df-sn 3480 df-pr 3481 df-op 3483 df-uni 3684 df-br 3876 df-opab 3930 df-mpt 3931 df-id 4153 df-xp 4483 df-rel 4484 df-cnv 4485 df-co 4486 df-dm 4487 df-rn 4488 df-res 4489 df-iota 5024 df-fun 5061 df-fv 5067 df-struct 11743 df-slot 11745 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |