ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strslfv3 GIF version

Theorem strslfv3 12474
Description: Variant on strslfv 12473 for large structures. (Contributed by Mario Carneiro, 10-Jan-2017.) (Revised by Jim Kingdon, 30-Jan-2023.)
Hypotheses
Ref Expression
strfv3.u (𝜑𝑈 = 𝑆)
strfv3.s 𝑆 Struct 𝑋
strslfv3.e (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)
strfv3.n {⟨(𝐸‘ndx), 𝐶⟩} ⊆ 𝑆
strfv3.c (𝜑𝐶𝑉)
strfv3.a 𝐴 = (𝐸𝑈)
Assertion
Ref Expression
strslfv3 (𝜑𝐴 = 𝐶)

Proof of Theorem strslfv3
StepHypRef Expression
1 strfv3.a . 2 𝐴 = (𝐸𝑈)
2 strfv3.c . . . 4 (𝜑𝐶𝑉)
3 strfv3.s . . . . 5 𝑆 Struct 𝑋
4 strslfv3.e . . . . 5 (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)
5 strfv3.n . . . . 5 {⟨(𝐸‘ndx), 𝐶⟩} ⊆ 𝑆
63, 4, 5strslfv 12473 . . . 4 (𝐶𝑉𝐶 = (𝐸𝑆))
72, 6syl 14 . . 3 (𝜑𝐶 = (𝐸𝑆))
8 strfv3.u . . . 4 (𝜑𝑈 = 𝑆)
98fveq2d 5511 . . 3 (𝜑 → (𝐸𝑈) = (𝐸𝑆))
107, 9eqtr4d 2211 . 2 (𝜑𝐶 = (𝐸𝑈))
111, 10eqtr4id 2227 1 (𝜑𝐴 = 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104   = wceq 1353  wcel 2146  wss 3127  {csn 3589  cop 3592   class class class wbr 3998  cfv 5208  cn 8892   Struct cstr 12425  ndxcnx 12426  Slot cslot 12428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-sep 4116  ax-pow 4169  ax-pr 4203  ax-un 4427
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-ral 2458  df-rex 2459  df-rab 2462  df-v 2737  df-sbc 2961  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-br 3999  df-opab 4060  df-mpt 4061  df-id 4287  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-iota 5170  df-fun 5210  df-fv 5216  df-struct 12431  df-slot 12433
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator