| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > strslfv3 | GIF version | ||
| Description: Variant on strslfv 13043 for large structures. (Contributed by Mario Carneiro, 10-Jan-2017.) (Revised by Jim Kingdon, 30-Jan-2023.) |
| Ref | Expression |
|---|---|
| strfv3.u | ⊢ (𝜑 → 𝑈 = 𝑆) |
| strslfv3.s | ⊢ (𝜑 → 𝑆 Struct 𝑋) |
| strslfv3.e | ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) |
| strslfv3.n | ⊢ (𝜑 → {〈(𝐸‘ndx), 𝐶〉} ⊆ 𝑆) |
| strfv3.c | ⊢ (𝜑 → 𝐶 ∈ 𝑉) |
| strfv3.a | ⊢ 𝐴 = (𝐸‘𝑈) |
| Ref | Expression |
|---|---|
| strslfv3 | ⊢ (𝜑 → 𝐴 = 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | strfv3.a | . 2 ⊢ 𝐴 = (𝐸‘𝑈) | |
| 2 | strslfv3.e | . . 3 ⊢ (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ) | |
| 3 | strfv3.u | . . . 4 ⊢ (𝜑 → 𝑈 = 𝑆) | |
| 4 | strslfv3.s | . . . . 5 ⊢ (𝜑 → 𝑆 Struct 𝑋) | |
| 5 | structex 13010 | . . . . 5 ⊢ (𝑆 Struct 𝑋 → 𝑆 ∈ V) | |
| 6 | 4, 5 | syl 14 | . . . 4 ⊢ (𝜑 → 𝑆 ∈ V) |
| 7 | 3, 6 | eqeltrd 2286 | . . 3 ⊢ (𝜑 → 𝑈 ∈ V) |
| 8 | structfung 13015 | . . . . 5 ⊢ (𝑆 Struct 𝑋 → Fun ◡◡𝑆) | |
| 9 | 4, 8 | syl 14 | . . . 4 ⊢ (𝜑 → Fun ◡◡𝑆) |
| 10 | 3 | cnveqd 4875 | . . . . . 6 ⊢ (𝜑 → ◡𝑈 = ◡𝑆) |
| 11 | 10 | cnveqd 4875 | . . . . 5 ⊢ (𝜑 → ◡◡𝑈 = ◡◡𝑆) |
| 12 | 11 | funeqd 5316 | . . . 4 ⊢ (𝜑 → (Fun ◡◡𝑈 ↔ Fun ◡◡𝑆)) |
| 13 | 9, 12 | mpbird 167 | . . 3 ⊢ (𝜑 → Fun ◡◡𝑈) |
| 14 | strslfv3.n | . . . . 5 ⊢ (𝜑 → {〈(𝐸‘ndx), 𝐶〉} ⊆ 𝑆) | |
| 15 | 2 | simpri 113 | . . . . . . 7 ⊢ (𝐸‘ndx) ∈ ℕ |
| 16 | strfv3.c | . . . . . . 7 ⊢ (𝜑 → 𝐶 ∈ 𝑉) | |
| 17 | opexg 4293 | . . . . . . 7 ⊢ (((𝐸‘ndx) ∈ ℕ ∧ 𝐶 ∈ 𝑉) → 〈(𝐸‘ndx), 𝐶〉 ∈ V) | |
| 18 | 15, 16, 17 | sylancr 414 | . . . . . 6 ⊢ (𝜑 → 〈(𝐸‘ndx), 𝐶〉 ∈ V) |
| 19 | snssg 3781 | . . . . . 6 ⊢ (〈(𝐸‘ndx), 𝐶〉 ∈ V → (〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆 ↔ {〈(𝐸‘ndx), 𝐶〉} ⊆ 𝑆)) | |
| 20 | 18, 19 | syl 14 | . . . . 5 ⊢ (𝜑 → (〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆 ↔ {〈(𝐸‘ndx), 𝐶〉} ⊆ 𝑆)) |
| 21 | 14, 20 | mpbird 167 | . . . 4 ⊢ (𝜑 → 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑆) |
| 22 | 21, 3 | eleqtrrd 2289 | . . 3 ⊢ (𝜑 → 〈(𝐸‘ndx), 𝐶〉 ∈ 𝑈) |
| 23 | 2, 7, 13, 22, 16 | strslfv2d 13041 | . 2 ⊢ (𝜑 → 𝐶 = (𝐸‘𝑈)) |
| 24 | 1, 23 | eqtr4id 2261 | 1 ⊢ (𝜑 → 𝐴 = 𝐶) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1375 ∈ wcel 2180 Vcvv 2779 ⊆ wss 3177 {csn 3646 〈cop 3649 class class class wbr 4062 ◡ccnv 4695 Fun wfun 5288 ‘cfv 5294 ℕcn 9078 Struct cstr 12994 ndxcnx 12995 Slot cslot 12997 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-13 2182 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-un 4501 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-ral 2493 df-rex 2494 df-rab 2497 df-v 2781 df-sbc 3009 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-nul 3472 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-br 4063 df-opab 4125 df-mpt 4126 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-rn 4707 df-res 4708 df-iota 5254 df-fun 5296 df-fv 5302 df-struct 13000 df-slot 13002 |
| This theorem is referenced by: prdsbaslemss 13273 |
| Copyright terms: Public domain | W3C validator |