ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  strslfv3 GIF version

Theorem strslfv3 11786
Description: Variant on strslfv 11785 for large structures. (Contributed by Mario Carneiro, 10-Jan-2017.) (Revised by Jim Kingdon, 30-Jan-2023.)
Hypotheses
Ref Expression
strfv3.u (𝜑𝑈 = 𝑆)
strfv3.s 𝑆 Struct 𝑋
strslfv3.e (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)
strfv3.n {⟨(𝐸‘ndx), 𝐶⟩} ⊆ 𝑆
strfv3.c (𝜑𝐶𝑉)
strfv3.a 𝐴 = (𝐸𝑈)
Assertion
Ref Expression
strslfv3 (𝜑𝐴 = 𝐶)

Proof of Theorem strslfv3
StepHypRef Expression
1 strfv3.c . . . 4 (𝜑𝐶𝑉)
2 strfv3.s . . . . 5 𝑆 Struct 𝑋
3 strslfv3.e . . . . 5 (𝐸 = Slot (𝐸‘ndx) ∧ (𝐸‘ndx) ∈ ℕ)
4 strfv3.n . . . . 5 {⟨(𝐸‘ndx), 𝐶⟩} ⊆ 𝑆
52, 3, 4strslfv 11785 . . . 4 (𝐶𝑉𝐶 = (𝐸𝑆))
61, 5syl 14 . . 3 (𝜑𝐶 = (𝐸𝑆))
7 strfv3.u . . . 4 (𝜑𝑈 = 𝑆)
87fveq2d 5357 . . 3 (𝜑 → (𝐸𝑈) = (𝐸𝑆))
96, 8eqtr4d 2135 . 2 (𝜑𝐶 = (𝐸𝑈))
10 strfv3.a . 2 𝐴 = (𝐸𝑈)
119, 10syl6reqr 2151 1 (𝜑𝐴 = 𝐶)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103   = wceq 1299  wcel 1448  wss 3021  {csn 3474  cop 3477   class class class wbr 3875  cfv 5059  cn 8578   Struct cstr 11737  ndxcnx 11738  Slot cslot 11740
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-pow 4038  ax-pr 4069  ax-un 4293
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-fal 1305  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ne 2268  df-ral 2380  df-rex 2381  df-rab 2384  df-v 2643  df-sbc 2863  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-br 3876  df-opab 3930  df-mpt 3931  df-id 4153  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-res 4489  df-iota 5024  df-fun 5061  df-fv 5067  df-struct 11743  df-slot 11745
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator