ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fin0or Unicode version

Theorem fin0or 6947
Description: A finite set is either empty or inhabited. (Contributed by Jim Kingdon, 30-Sep-2021.)
Assertion
Ref Expression
fin0or  |-  ( A  e.  Fin  ->  ( A  =  (/)  \/  E. x  x  e.  A
) )
Distinct variable group:    x, A

Proof of Theorem fin0or
Dummy variables  f  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfi 6820 . . 3  |-  ( A  e.  Fin  <->  E. n  e.  om  A  ~~  n
)
21biimpi 120 . 2  |-  ( A  e.  Fin  ->  E. n  e.  om  A  ~~  n
)
3 nn0suc 4640 . . . 4  |-  ( n  e.  om  ->  (
n  =  (/)  \/  E. m  e.  om  n  =  suc  m ) )
43ad2antrl 490 . . 3  |-  ( ( A  e.  Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  ->  ( n  =  (/)  \/  E. m  e.  om  n  =  suc  m ) )
5 simplrr 536 . . . . . . 7  |-  ( ( ( A  e.  Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  n  =  (/) )  ->  A  ~~  n )
6 simpr 110 . . . . . . 7  |-  ( ( ( A  e.  Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  n  =  (/) )  ->  n  =  (/) )
75, 6breqtrd 4059 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  n  =  (/) )  ->  A  ~~  (/) )
8 en0 6854 . . . . . 6  |-  ( A 
~~  (/)  <->  A  =  (/) )
97, 8sylib 122 . . . . 5  |-  ( ( ( A  e.  Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  n  =  (/) )  ->  A  =  (/) )
109ex 115 . . . 4  |-  ( ( A  e.  Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  ->  ( n  =  (/)  ->  A  =  (/) ) )
11 simplrr 536 . . . . . . . . . 10  |-  ( ( ( A  e.  Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  m  e. 
om )  ->  A  ~~  n )
1211adantr 276 . . . . . . . . 9  |-  ( ( ( ( A  e. 
Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  m  e.  om )  /\  n  =  suc  m )  ->  A  ~~  n )
1312ensymd 6842 . . . . . . . 8  |-  ( ( ( ( A  e. 
Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  m  e.  om )  /\  n  =  suc  m )  ->  n  ~~  A )
14 bren 6806 . . . . . . . 8  |-  ( n 
~~  A  <->  E. f 
f : n -1-1-onto-> A )
1513, 14sylib 122 . . . . . . 7  |-  ( ( ( ( A  e. 
Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  m  e.  om )  /\  n  =  suc  m )  ->  E. f 
f : n -1-1-onto-> A )
16 f1of 5504 . . . . . . . . . 10  |-  ( f : n -1-1-onto-> A  ->  f :
n --> A )
1716adantl 277 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  Fin  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  m  e.  om )  /\  n  =  suc  m )  /\  f : n -1-1-onto-> A )  ->  f : n --> A )
18 sucidg 4451 . . . . . . . . . . 11  |-  ( m  e.  om  ->  m  e.  suc  m )
1918ad3antlr 493 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  Fin  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  m  e.  om )  /\  n  =  suc  m )  /\  f : n -1-1-onto-> A )  ->  m  e.  suc  m )
20 simplr 528 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  Fin  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  m  e.  om )  /\  n  =  suc  m )  /\  f : n -1-1-onto-> A )  ->  n  =  suc  m )
2119, 20eleqtrrd 2276 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  Fin  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  m  e.  om )  /\  n  =  suc  m )  /\  f : n -1-1-onto-> A )  ->  m  e.  n )
2217, 21ffvelcdmd 5698 . . . . . . . 8  |-  ( ( ( ( ( A  e.  Fin  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  m  e.  om )  /\  n  =  suc  m )  /\  f : n -1-1-onto-> A )  ->  (
f `  m )  e.  A )
23 elex2 2779 . . . . . . . 8  |-  ( ( f `  m )  e.  A  ->  E. x  x  e.  A )
2422, 23syl 14 . . . . . . 7  |-  ( ( ( ( ( A  e.  Fin  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  m  e.  om )  /\  n  =  suc  m )  /\  f : n -1-1-onto-> A )  ->  E. x  x  e.  A )
2515, 24exlimddv 1913 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  m  e.  om )  /\  n  =  suc  m )  ->  E. x  x  e.  A )
2625ex 115 . . . . 5  |-  ( ( ( A  e.  Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  m  e. 
om )  ->  (
n  =  suc  m  ->  E. x  x  e.  A ) )
2726rexlimdva 2614 . . . 4  |-  ( ( A  e.  Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  ->  ( E. m  e.  om  n  =  suc  m  ->  E. x  x  e.  A )
)
2810, 27orim12d 787 . . 3  |-  ( ( A  e.  Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  ->  ( (
n  =  (/)  \/  E. m  e.  om  n  =  suc  m )  -> 
( A  =  (/)  \/ 
E. x  x  e.  A ) ) )
294, 28mpd 13 . 2  |-  ( ( A  e.  Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  ->  ( A  =  (/)  \/  E. x  x  e.  A )
)
302, 29rexlimddv 2619 1  |-  ( A  e.  Fin  ->  ( A  =  (/)  \/  E. x  x  e.  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 709    = wceq 1364   E.wex 1506    e. wcel 2167   E.wrex 2476   (/)c0 3450   class class class wbr 4033   suc csuc 4400   omcom 4626   -->wf 5254   -1-1-onto->wf1o 5257   ` cfv 5258    ~~ cen 6797   Fincfn 6799
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-nul 4159  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-iinf 4624
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-int 3875  df-br 4034  df-opab 4095  df-id 4328  df-suc 4406  df-iom 4627  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-er 6592  df-en 6800  df-fin 6802
This theorem is referenced by:  xpfi  6993  fival  7036  fiubm  10920  fsumcllem  11564  fprodcllem  11771  gsumwsubmcl  13128  gsumwmhm  13130
  Copyright terms: Public domain W3C validator