ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fin0or Unicode version

Theorem fin0or 6852
Description: A finite set is either empty or inhabited. (Contributed by Jim Kingdon, 30-Sep-2021.)
Assertion
Ref Expression
fin0or  |-  ( A  e.  Fin  ->  ( A  =  (/)  \/  E. x  x  e.  A
) )
Distinct variable group:    x, A

Proof of Theorem fin0or
Dummy variables  f  m  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 isfi 6727 . . 3  |-  ( A  e.  Fin  <->  E. n  e.  om  A  ~~  n
)
21biimpi 119 . 2  |-  ( A  e.  Fin  ->  E. n  e.  om  A  ~~  n
)
3 nn0suc 4581 . . . 4  |-  ( n  e.  om  ->  (
n  =  (/)  \/  E. m  e.  om  n  =  suc  m ) )
43ad2antrl 482 . . 3  |-  ( ( A  e.  Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  ->  ( n  =  (/)  \/  E. m  e.  om  n  =  suc  m ) )
5 simplrr 526 . . . . . . 7  |-  ( ( ( A  e.  Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  n  =  (/) )  ->  A  ~~  n )
6 simpr 109 . . . . . . 7  |-  ( ( ( A  e.  Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  n  =  (/) )  ->  n  =  (/) )
75, 6breqtrd 4008 . . . . . 6  |-  ( ( ( A  e.  Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  n  =  (/) )  ->  A  ~~  (/) )
8 en0 6761 . . . . . 6  |-  ( A 
~~  (/)  <->  A  =  (/) )
97, 8sylib 121 . . . . 5  |-  ( ( ( A  e.  Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  n  =  (/) )  ->  A  =  (/) )
109ex 114 . . . 4  |-  ( ( A  e.  Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  ->  ( n  =  (/)  ->  A  =  (/) ) )
11 simplrr 526 . . . . . . . . . 10  |-  ( ( ( A  e.  Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  m  e. 
om )  ->  A  ~~  n )
1211adantr 274 . . . . . . . . 9  |-  ( ( ( ( A  e. 
Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  m  e.  om )  /\  n  =  suc  m )  ->  A  ~~  n )
1312ensymd 6749 . . . . . . . 8  |-  ( ( ( ( A  e. 
Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  m  e.  om )  /\  n  =  suc  m )  ->  n  ~~  A )
14 bren 6713 . . . . . . . 8  |-  ( n 
~~  A  <->  E. f 
f : n -1-1-onto-> A )
1513, 14sylib 121 . . . . . . 7  |-  ( ( ( ( A  e. 
Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  m  e.  om )  /\  n  =  suc  m )  ->  E. f 
f : n -1-1-onto-> A )
16 f1of 5432 . . . . . . . . . 10  |-  ( f : n -1-1-onto-> A  ->  f :
n --> A )
1716adantl 275 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  Fin  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  m  e.  om )  /\  n  =  suc  m )  /\  f : n -1-1-onto-> A )  ->  f : n --> A )
18 sucidg 4394 . . . . . . . . . . 11  |-  ( m  e.  om  ->  m  e.  suc  m )
1918ad3antlr 485 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  Fin  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  m  e.  om )  /\  n  =  suc  m )  /\  f : n -1-1-onto-> A )  ->  m  e.  suc  m )
20 simplr 520 . . . . . . . . . 10  |-  ( ( ( ( ( A  e.  Fin  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  m  e.  om )  /\  n  =  suc  m )  /\  f : n -1-1-onto-> A )  ->  n  =  suc  m )
2119, 20eleqtrrd 2246 . . . . . . . . 9  |-  ( ( ( ( ( A  e.  Fin  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  m  e.  om )  /\  n  =  suc  m )  /\  f : n -1-1-onto-> A )  ->  m  e.  n )
2217, 21ffvelrnd 5621 . . . . . . . 8  |-  ( ( ( ( ( A  e.  Fin  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  m  e.  om )  /\  n  =  suc  m )  /\  f : n -1-1-onto-> A )  ->  (
f `  m )  e.  A )
23 elex2 2742 . . . . . . . 8  |-  ( ( f `  m )  e.  A  ->  E. x  x  e.  A )
2422, 23syl 14 . . . . . . 7  |-  ( ( ( ( ( A  e.  Fin  /\  (
n  e.  om  /\  A  ~~  n ) )  /\  m  e.  om )  /\  n  =  suc  m )  /\  f : n -1-1-onto-> A )  ->  E. x  x  e.  A )
2515, 24exlimddv 1886 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  m  e.  om )  /\  n  =  suc  m )  ->  E. x  x  e.  A )
2625ex 114 . . . . 5  |-  ( ( ( A  e.  Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  /\  m  e. 
om )  ->  (
n  =  suc  m  ->  E. x  x  e.  A ) )
2726rexlimdva 2583 . . . 4  |-  ( ( A  e.  Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  ->  ( E. m  e.  om  n  =  suc  m  ->  E. x  x  e.  A )
)
2810, 27orim12d 776 . . 3  |-  ( ( A  e.  Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  ->  ( (
n  =  (/)  \/  E. m  e.  om  n  =  suc  m )  -> 
( A  =  (/)  \/ 
E. x  x  e.  A ) ) )
294, 28mpd 13 . 2  |-  ( ( A  e.  Fin  /\  ( n  e.  om  /\  A  ~~  n ) )  ->  ( A  =  (/)  \/  E. x  x  e.  A )
)
302, 29rexlimddv 2588 1  |-  ( A  e.  Fin  ->  ( A  =  (/)  \/  E. x  x  e.  A
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    \/ wo 698    = wceq 1343   E.wex 1480    e. wcel 2136   E.wrex 2445   (/)c0 3409   class class class wbr 3982   suc csuc 4343   omcom 4567   -->wf 5184   -1-1-onto->wf1o 5187   ` cfv 5188    ~~ cen 6704   Fincfn 6706
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-iinf 4565
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-br 3983  df-opab 4044  df-id 4271  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-er 6501  df-en 6707  df-fin 6709
This theorem is referenced by:  xpfi  6895  fival  6935  fiubm  10741  fsumcllem  11340  fprodcllem  11547
  Copyright terms: Public domain W3C validator