ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suprlubex Unicode version

Theorem suprlubex 8847
Description: The supremum of a nonempty bounded set of reals is the least upper bound. (Contributed by Jim Kingdon, 19-Jan-2022.)
Hypotheses
Ref Expression
suprubex.ex  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) )
suprubex.ss  |-  ( ph  ->  A  C_  RR )
suprlubex.b  |-  ( ph  ->  B  e.  RR )
Assertion
Ref Expression
suprlubex  |-  ( ph  ->  ( B  <  sup ( A ,  RR ,  <  )  <->  E. z  e.  A  B  <  z ) )
Distinct variable groups:    x, A, y, z    ph, x    z, B
Allowed substitution hints:    ph( y, z)    B( x, y)

Proof of Theorem suprlubex
Dummy variables  f  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 suprlubex.b . 2  |-  ( ph  ->  B  e.  RR )
2 lttri3 7978 . . . 4  |-  ( ( f  e.  RR  /\  g  e.  RR )  ->  ( f  =  g  <-> 
( -.  f  < 
g  /\  -.  g  <  f ) ) )
32adantl 275 . . 3  |-  ( (
ph  /\  ( f  e.  RR  /\  g  e.  RR ) )  -> 
( f  =  g  <-> 
( -.  f  < 
g  /\  -.  g  <  f ) ) )
4 suprubex.ex . . 3  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) )
5 ltso 7976 . . . 4  |-  <  Or  RR
65a1i 9 . . 3  |-  ( ph  ->  <  Or  RR )
7 suprubex.ss . . 3  |-  ( ph  ->  A  C_  RR )
83, 4, 6, 7suplub2ti 6966 . 2  |-  ( (
ph  /\  B  e.  RR )  ->  ( B  <  sup ( A ,  RR ,  <  )  <->  E. z  e.  A  B  <  z ) )
91, 8mpdan 418 1  |-  ( ph  ->  ( B  <  sup ( A ,  RR ,  <  )  <->  E. z  e.  A  B  <  z ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 2136   A.wral 2444   E.wrex 2445    C_ wss 3116   class class class wbr 3982    Or wor 4273   supcsup 6947   RRcr 7752    < clt 7933
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-cnex 7844  ax-resscn 7845  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rmo 2452  df-rab 2453  df-v 2728  df-sbc 2952  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-po 4274  df-iso 4275  df-xp 4610  df-iota 5153  df-riota 5798  df-sup 6949  df-pnf 7935  df-mnf 7936  df-ltxr 7938
This theorem is referenced by:  suprnubex  8848  suprzclex  9289
  Copyright terms: Public domain W3C validator