ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  suprlubex Unicode version

Theorem suprlubex 8996
Description: The supremum of a nonempty bounded set of reals is the least upper bound. (Contributed by Jim Kingdon, 19-Jan-2022.)
Hypotheses
Ref Expression
suprubex.ex  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) )
suprubex.ss  |-  ( ph  ->  A  C_  RR )
suprlubex.b  |-  ( ph  ->  B  e.  RR )
Assertion
Ref Expression
suprlubex  |-  ( ph  ->  ( B  <  sup ( A ,  RR ,  <  )  <->  E. z  e.  A  B  <  z ) )
Distinct variable groups:    x, A, y, z    ph, x    z, B
Allowed substitution hints:    ph( y, z)    B( x, y)

Proof of Theorem suprlubex
Dummy variables  f  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 suprlubex.b . 2  |-  ( ph  ->  B  e.  RR )
2 lttri3 8123 . . . 4  |-  ( ( f  e.  RR  /\  g  e.  RR )  ->  ( f  =  g  <-> 
( -.  f  < 
g  /\  -.  g  <  f ) ) )
32adantl 277 . . 3  |-  ( (
ph  /\  ( f  e.  RR  /\  g  e.  RR ) )  -> 
( f  =  g  <-> 
( -.  f  < 
g  /\  -.  g  <  f ) ) )
4 suprubex.ex . . 3  |-  ( ph  ->  E. x  e.  RR  ( A. y  e.  A  -.  x  <  y  /\  A. y  e.  RR  (
y  <  x  ->  E. z  e.  A  y  <  z ) ) )
5 ltso 8121 . . . 4  |-  <  Or  RR
65a1i 9 . . 3  |-  ( ph  ->  <  Or  RR )
7 suprubex.ss . . 3  |-  ( ph  ->  A  C_  RR )
83, 4, 6, 7suplub2ti 7076 . 2  |-  ( (
ph  /\  B  e.  RR )  ->  ( B  <  sup ( A ,  RR ,  <  )  <->  E. z  e.  A  B  <  z ) )
91, 8mpdan 421 1  |-  ( ph  ->  ( B  <  sup ( A ,  RR ,  <  )  <->  E. z  e.  A  B  <  z ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    e. wcel 2167   A.wral 2475   E.wrex 2476    C_ wss 3157   class class class wbr 4034    Or wor 4331   supcsup 7057   RRcr 7895    < clt 8078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rmo 2483  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-po 4332  df-iso 4333  df-xp 4670  df-iota 5220  df-riota 5880  df-sup 7059  df-pnf 8080  df-mnf 8081  df-ltxr 8083
This theorem is referenced by:  suprnubex  8997  suprzclex  9441
  Copyright terms: Public domain W3C validator